
MK-95ARC012-18

Hitachi Content Platform
Using the Default Namespace

© 2007–2015 Hitachi Data Systems Corporation. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying and recording, or stored in a database or retrieval system for any
purpose without the express written permission of Hitachi Data Systems Corporation (hereinafter
referred to as “Hitachi Data Systems”).

Hitachi Data Systems reserves the right to make changes to this document at any time without notice
and assumes no responsibility for its use. This document contains the most current information
available at the time of publication. When new and/or revised information becomes available, this
entire document will be updated and distributed to all registered users.

Some of the features described in this document may not be currently available. Refer to the most
recent product announcement or contact Hitachi Data Systems for information about feature and
product availability.

Notice: Hitachi Data Systems products and services can be ordered only under the terms and
conditions of the applicable Hitachi Data Systems agreements. The use of Hitachi Data Systems
products is governed by the terms of your agreements with Hitachi Data Systems.

By using this software, you agree that you are responsible for:

a) Acquiring the relevant consents as may be required under local privacy laws or otherwise from
employees and other individuals to access relevant data; and

b) Ensuring that data continues to be held, retrieved, deleted, or otherwise processed in accordance
with relevant laws.

Hitachi is a registered trademark of Hitachi, Ltd., in the United States and other countries. Hitachi Data
Systems is a registered trademark and service mark of Hitachi, Ltd., in the United States and other
countries.

Archivas, Essential NAS Platform, HiCommand, Hi-Track, ShadowImage, Tagmaserve, Tagmasoft,
Tagmasolve, Tagmastore, TrueCopy, Universal Star Network, and Universal Storage Platform are
registered trademarks of Hitachi Data Systems Corporation.

AIX, AS/400, DB2, Domino, DS6000, DS8000, Enterprise Storage Server, ESCON, FICON, FlashCopy,
IBM, Lotus, MVS, OS/390, RS6000, S/390, System z9, System z10, Tivoli, VM/ESA, z/OS, z9, z10,
zSeries, z/VM, and z/VSE are registered trademarks or trademarks of International Business Machines
Corporation.

All other trademarks, service marks, and company names in this document or web site are properties of
their respective owners.

Microsoft product screen shots reprinted with permission from Microsoft Corporation.

Notice on Export Controls. The technical data and technology inherent in this Document may be
subject to U.S. export control laws, including the U.S. Export Administration Act and its associated
regulations, and may be subject to export or import regulations in other countries. Reader agrees to
comply strictly with all such regulations and acknowledges that Reader has the responsibility to obtain
licenses to export, re-export, or import the Document and any Compliant Products.

Contents

Preface.. ix

Intended audience .ix
Product version . x
Syntax notation . x
Related documents. .xi
Getting help. xiv
Comments . xiv

1 Introduction to Hitachi Content Platform.. 1

About Hitachi Content Platform . 2
Object-based storage . 2
Namespaces and tenants . 3
Object representation . 4
Data access . 5

Namespace access protocols . 5
HCP metadata query API . 6
HCP Search Console . 7
HCP Data Migrator . 8

HCP nodes. 9
Replication. 9

Default namespace operations. 10
Operation restrictions . 10
Supported operations . 11
Prohibited operations . 12

2 HCP file system... 15

Root directories . 16
Object naming considerations . 16
Sample data structure for examples . 18
Contents iii

Using the Default Namespace

Metadirectories . 18
Metadirectories for directories . 18
Metadirectories for objects . 20

Metafiles . 21
Metafiles for directories. 21
Metafiles for objects . 26

Complete metadata structure . 30

3 Object properties ... 33

Object metadata . 34
Ownership and permissions. 36

Viewing permissions . 37
Octal permission values. 38
Ownership and permissions for new objects . 38
Changing ownership and permissions for existing objects 39

Retention . 39
Retention periods . 40
Retention classes . 42
Retention settings in retention.txt . 43
Changing retention settings . 45

Specifying a date and time . 48
Specifying an offset . 49

atime synchronization with retention . 51
Triggering atime synchronization for existing objects 52
Removing the association . 54
How atime synchronization works . 54
atime synchronization example . 56

Shred setting . 57
Index setting . 58
Custom metadata. 60
Replication collisions. 62

Object content collisions . 62
System metadata collisions . 63
Custom metadata collisions . 66

4 HTTP ... 69

URLs for HTTP access to a namespace . 70
URL formats. 70
URL considerations . 72
Access with a cryptographic hash value . 73

Transmitting data in compressed format. 75
Browsing the namespace with HTTP. 76
Working with objects . 77
iv Contents

Using the Default Namespace

Storing an object and, optionally, custom metadata 77
Checking the existence of an object . 86
Retrieving an object and, optionally, custom metadata. 89
Deleting an object . 102

Working with directories . 105
Creating an empty directory . 105
Checking the existence of a directory . 106
Listing directory contents . 108
Deleting a directory . 112

Working with system metadata . 113
Specifying metadata on object creation . 114
Specifying metadata on directory creation. 119
Retrieving HCP-specific metadata. 121
Retrieving POSIX metadata . 123
Modifying HCP-specific metadata . 123
Modifying POSIX metadata . 125

Working with custom metadata . 131
Storing custom metadata . 131
Checking the existence of custom metadata . 134
Retrieving custom metadata . 136
Deleting custom metadata. 139

Checking the available storage and software version 141
HTTP usage considerations . 143

HTTP permission checking. 143
HTTP persistent connections . 144
Storing zero-sized files with HTTP . 144
Using HTTP with objects open for write . 144
Failed HTTP write operations . 145
HTTP connection failure handling . 145
Data chunking with HTTP write operations . 146
Multithreading with HTTP . 146

5 WebDAV.. 147

WebDAV methods . 148
URLs for WebDAV access to the default namespace. 149

URL formats. 149
URL considerations . 151

Browsing the namespace with WebDAV . 152
WebDAV properties . 153

Live and dead properties . 154
Storage properties . 154
HCP-specific metadata properties for WebDAV . 155

Metadata properties for objects . 155
Contents v

Using the Default Namespace

Metadata properties for directories . 157
PROPPATCH example . 158
PROPFIND example . 159

Using the custom-metadata.xml file to store dead properties 160
WebDAV usage considerations. 161

Basic authentication with WebDAV . 161
WebDAV permission checking . 161
WebDAV persistent connections. 161
WebDAV client timeouts with long-running requests 162
WebDAV object locking . 162
Storing zero-sized files with WebDAV . 162
Using WebDAV with objects open for write . 163
Failed WebDAV write operations . 163
Multithreading with WebDAV . 163

WebDAV return codes. 164

6 CIFS .. 167

Namespace access with CIFS. 168
CIFS examples . 168

CIFS example 1: Storing an object . 169
CIFS example 2: Changing a retention setting . 169
CIFS example 3: Retrieving an object . 169
CIFS example 4: Retrieving deletable objects . 170

CIFS usage considerations. 170
CIFS case sensitivity . 170
CIFS permission translations . 171
Changing directory permissions when using Active Directory. 172
Creating an empty directory with atime synchronization in effect 172
CIFS lazy close . 172
Storing zero-sized files with CIFS . 172
Out-of-order writes with CIFS . 173
Using CIFS with Objects open for write. 173
Failed CIFS write operations . 174
Temporary files created by Windows clients . 174
Multithreading with CIFS . 175

CIFS return codes. 176

7 NFS ... 177

Namespace access with NFS . 178
NFS examples . 179

NFS example 1: Adding a file . 179
NFS example 2: Changing a retention setting . 179
vi Contents

Using the Default Namespace

NFS example 3: Using atime to set retention . 180
NFS example 4: Creating a symbolic link in the namespace 180
NFS example 5: Retrieving an object . 180
NFS example 6: Retrieving deletable objects . 181

NFS usage considerations . 181
NFS lazy close . 181
Storing zero-sized files with NFS . 182
Out-of-order writes with NFS . 182

Using NFS with objects open for write . 182
Failed NFS write operations . 183
NFS reads of large objects. 184
Walking large directory trees . 184
NFS delete operations . 184
NFS mounts on a failed node. 184
Multithreading with NFS . 185

NFS return codes . 186

8 SMTP... 187

Storing individual emails . 188
Naming conventions for email objects . 188

9 General usage considerations... 191

Choosing an access protocol . 192
Using a hosts file . 193
DNS name and IP address considerations . 194
Directory structures . 195
Non-WORM objects . 196
Moving or renaming objects . 196
Deleting objects under repair. 197
Deleting directories. 197
Multithreading . 197

A HTTP reference... 199

HTTP methods . 200
HTTP return codes . 204
HCP-specific HTTP response headers . 209

B Java classes for examples .. 213

GZIPCompressedInputStream class . 214
WholeIOInputStream class . 220
WholeIOOutputStream class . 221
Contents vii

Using the Default Namespace

Glossary... 225

Index .. 239
viii Contents

Using the Default Namespace

Preface

This book is your guide to working with the default namespace for an
Hitachi Content Platform (HCP) system. It introduces HCP concepts
and describes how HCP represents namespace content using familiar data
structures. It includes instructions for accessing the namespace using the
supported namespace access protocols and explains how to store, view,
retrieve, and delete objects in the namespace, as well as how to change
object metadata such as retention and permissions. It also contains usage
considerations to help you work more effectively with the namespace.

Intended audience

This book is intended for people who need to know how to store, retrieve,
and otherwise manipulate data and metadata in an HCP default
namespace. It provides information for users who are writing applications
to access the namespace and for users who are accessing the namespace
directly through a command-line interface or GUI (such as Windows®
Explorer).

If you are writing applications, this book assumes you have programming
experience. If you are accessing the default namespace directly, this book
assumes you have experience with the tools you use for file manipulation.

Note: Throughout this book, the word Unix is used to represent all
UNIX®-like operating systems (such as UNIX itself or Linux®).

Tip: If you are new to HCP, be sure to read the first three chapters of this
book before writing HCP applications or accessing the default namespace
directly.
Preface ix

Using the Default Namespace

Product version
Product version

This book applies to release 7.1 of HCP.

Syntax notation

The table below describes the conventions used for the syntax of
commands, expressions, URLs, and object names in this book.

Notation Meaning Example

boldface Type exactly as it appears
in the syntax (if the
context is case
insensitive, you can vary
the case of the letters you
type)

This book shows: mount
You enter: mount

italics Replace with a value of
the indicated type

This book shows: hash-algorithm
You enter: SHA-256

| Vertical bar — Choose one
of the elements on either
side of the bar, but not
both

This book shows: fcfs_data|fcfs_metadata
You enter: fcfs_data
or: fcfs_metadata

[] Square brackets —
Include none, one, or
more of the elements
between the brackets

This book shows: fcfs_data[/directory-path]
You enter: fcfs_data
or: fcfs_data/images

() Parentheses — Include
exactly one of the
elements between the
parentheses

This book shows: (+|-)hhmm
You enter: +0500
or: -0500

-object-spec Replace with the
combination of the
directory path and name
of an object

This book shows: X-DocURI-0: /fcfs_data/object-spec-1
You see: X-DocURI-0: /fcfs_data/images/wind.jpg

-path Replace with a directory
path with no file or object
name

This book shows: fcfs_data/directory-path
You enter: fcfs_data/corporate/employees
x Preface

Using the Default Namespace

Related documents
Related documents

The following documents contain additional information about Hitachi
Content Platform:

• Administering HCP — This book explains how to use an HCP system to
monitor and manage a digital object repository. It discusses the
capabilities of the system, as well as its hardware and software
components. The book presents both the concepts and instructions
you need to configure the system, including creating the tenants that
administer access to the repository. It also covers the processes that
maintain the integrity and security of the repository contents.

• Managing a Tenant and Its Namespaces — This book contains complete
information for managing the HCP tenants and namespaces created in
an HCP system. It provides instructions for creating namespaces,
setting up user accounts, configuring the protocols that allow access to
namespaces, managing search and indexing, and downloading
installation files for HCP Data Migrator. It also explains how to work
with retention classes and the privileged delete functionality.

• Managing the Default Tenant and Namespace — This book contains
complete information for managing the default tenant and namespace
in an HCP system. It provides instructions for changing tenant and
namespace settings, configuring the protocols that allow access to the
namespace, managing search and indexing, and downloading
installation files for HCP Data Migrator. It also explains how to work
with retention classes and the privileged delete functionality.

• Replicating Tenants and Namespaces — This book covers all aspects of
tenant and namespace replication. Replication is the process of
keeping selected tenants and namespaces in two or more HCP systems
in sync with each other to ensure data availability and enable disaster
recovery. The book describes how replication works, contains
instructions for working with replication links, and explains how to
manage and monitor the replication process.

• HCP Management API Reference — This book contains the information
you need to use the HCP management API. This RESTful HTTP API
enables you to create and manage tenants and namespaces
programmatically. The book explains how to use the API to access an
HCP system, specify resources, and update and retrieve resource
properties.
Preface xi

Using the Default Namespace

Related documents
• Using a Namespace — This book describes the properties of objects in
HCP namespaces. It provides instructions for accessing namespaces by
using the HTTP, WebDAV, CIFS, and NFS protocols for the purpose of
storing, retrieving, and deleting objects, as well as changing object
metadata such as retention and shred settings. It also explains how to
manage namespace content and view namespace information in the
Namespace Browser.

• Using the HCP HS3 API — This book contains the information you need
to use the HCP HS3 API. This S3™-compatible, RESTful, HTTP-based
API enables you to work with buckets and objects in HCP. The book
introduces the HCP concepts you need to understand in order to use
HS3 effectively and contains instructions and examples for each of the
bucket and object operations you can perform with HS3.

• Using the HCP OpenStack Swift API — This book contains the
information you need to use the HCP OpenStack Swift API. This
S3™-compatible, RESTful, HTTP-based API enables you to work with
containers and objects in HCP. The book introduces the HCP concepts
you need to understand in order to use HSwift effectively and contains
instructions and examples for each of the container and object
operations you can perform with HSwift.

• HCP Metadata Query API Reference — This book describes the HCP
metadata query API. This RESTful HTTP API enables you to query
namespaces for objects that satisfy criteria you specify. The book
explains how to construct and perform queries and describes query
results. It also contains several examples, which you can use as
models for your own queries.

• Searching Namespaces — This book describes the HCP Search Console
(also called the Metadata Query Engine Console). It explains how to
use the Console to search namespaces for objects that satisfy criteria
you specify. It also explains how to manage and manipulate queries
and search results. The book contains many examples, which you can
use as models for your own searches.

• Using HCP Data Migrator — This book contains the information you
need to install and use HCP Data Migrator (HCP-DM), a utility that
works with HCP. This utility enables you to copy data between local file
systems, namespaces in HCP, and earlier HCAP archives. It also
supports bulk delete operations and bulk operations to change object
metadata. Additionally, it supports associating custom metadata and
xii Preface

Using the Default Namespace

Related documents
ACLs with individual objects. The book describes both the interactive
window-based interface and the set of command-line tools included in
HCP-DM.

• Installing an HCP System — This book provides the information you
need to install the software for a new HCP system. It explains what
you need to know to successfully configure the system and contains
step-by-step instructions for the installation procedure.

• Deploying an HCP-VM System — This book contains all the information
you need to install and configure an HCP-VM system. The book also
includes requirements and guidelines for configuring the VMWare®
environment in which the system is installed.

• Third-Party Licenses and Copyrights — This book contains copyright
and license information for third-party software distributed with or
embedded in HCP.

• HCP-DM Third-Party Licenses and Copyrights — This book contains
copyright and license information for third-party software distributed
with or embedded in HCP Data Migrator.

• Installing an HCP SAIN System — Final On-site Setup — This book
contains instructions for deploying an assembled and configured
single-rack HCP SAIN system at a customer site. It explains how to
make the necessary physical connections and reconfigure the system
for the customer computing environment. It also contains instructions
for configuring Hi-Track® Monitor to monitor the nodes in an HCP
system.

• Installing an HCP RAIN System — Final On-site Setup — This book
contains instructions for deploying an assembled and configured HCP
RAIN system at a customer site. It explains how to make the
necessary physical connections and reconfigure the system for the
customer computing environment. The book also provides instructions
for assembling the components of an HCP RAIN system that was
ordered without a rack and for configuring Hi-Track Monitor to monitor
the nodes in an HCP system.
Preface xiii

Using the Default Namespace

Getting help
Getting help

The Hitachi Data Systems® customer support staff is available 24 hours a
day, seven days a week. If you need technical support, call:

• United States: (800) 446-0744

• Outside the United States: (858) 547-4526

Comments

Please send us your comments on this document:

HCPDocumentationFeedback@hds.com

Include the document title, number, and revision, and refer to specific
sections and paragraphs whenever possible. All comments become the
property of Hitachi Data Systems.

Thank you!

Note: If you purchased HCP from a third party, please contact your
authorized service provider.
xiv Preface

Using the Default Namespace

mailto:HCPDocumentationFeedback@hds.com

1

Introduction to Hitachi Content

Platform

Hitachi Content Platform (HCP) is a distributed storage system
designed to support large, growing repositories of fixed-content data. HCP
stores objects that include both data and metadata that describes that
data and presents the objects as files in a standard directory structure.

HCP provides access to objects through a variety of industry-standard
protocols, as well as through various HCP-specific interfaces.

This chapter introduces basic HCP concepts and includes information on
what you can do with an HCP repository.
Chapter 1: Introduction to Hitachi Content Platform 1

Using the Default Namespace

About Hitachi Content Platform
About Hitachi Content Platform

Hitachi Content Platform is a combination of software and hardware that
provides an object-based data storage environment. An HCP repository
stores all types of data, from simple text files to medical images to
multigigabyte database images.

HCP provides easy access to the repository for adding, retrieving, and
deleting data. HCP uses write-once, read-many (WORM) storage
technology and a variety of policies and internal processes to ensure the
integrity of the stored data and the efficient use of storage capacity.

Object-based storage

HCP stores objects in the repository. Each object permanently associates
data HCP receives (for example, a document, an image, or a movie) with
information about that data, called metadata.

An object encapsulates:

• Fixed-content data — An exact digital reproduction of data as it
existed before it was stored in HCP. Once it’s in the repository, this
fixed-content data cannot be modified.

• System metadata — System-managed properties that describe the
fixed-content data (for example, its size and creation date). System
metadata consists of POSIX metadata as well as HCP-specific settings.

• Custom metadata — Optional metadata that a user or application
provides to further describe an object. Custom metadata is typically
specified in XML format.

You can use custom metadata to create self-describing objects. Users
and applications can use this metadata to understand and repurpose
the object content.

HCP also stores directories and symbolic links. These items have POSIX
metadata and, in the case of directories, HCP-specific metadata, but no
fixed-content data or custom metadata.
2 Chapter 1: Introduction to Hitachi Content Platform

Using the Default Namespace

About Hitachi Content Platform
HCP supports appendable objects. An appendable object is one to which
data can be added after it has been successfully stored. Appending data to
an object does not modify the original fixed-content data, nor does it
create a new version of the object. Once the new data is added to the
object, that data also cannot be modified.

For more information on metadata, see Chapter 3, “Object properties,” on
page 33.

Namespaces and tenants

An HCP repository is partitioned into namespaces. A namespace is a
logical grouping of objects such that the objects in one namespace are not
visible in any other namespace.

Namespaces provide a mechanism for separating the data stored for
different applications, business units, or customers. For example, you
could have one namespace for accounts receivable and another for
accounts payable.

Namespaces also enable operations to work against selected subsets of
repository objects. For example, you could perform a query that targets
the accounts receivable and accounts payable namespaces but not the
employees namespace.

Default and HCP namespaces
An HCP system can have multiple namespaces, including one special
namespace called the default namespace. Applications are typically
written against namespaces other than the default; these namespaces are
called HCP namespaces. The default namespace is most often used with
applications that existed before release 3.0 of HCP.

The table below outlines the major differences between the default and
HCP namespaces.

Note for WebDAV users: An object is equivalent to a WebDAV resource.
A directory is equivalent to a WebDAV collection.

Feature
HCP

Namespaces
Default

Namespace

Storage usage quotas 

Object ownership (not related to POSIX UID) 

Access control lists (ACLs) for objects 
Chapter 1: Introduction to Hitachi Content Platform 3

Using the Default Namespace

About Hitachi Content Platform
Tenants
Namespaces are owned and managed by administrative entities called
tenants. A tenant typically corresponds to an organization such as a
company or a division or department within a company.

One tenant, called the default tenant, owns the default namespace and
only that namespace. Other tenants can each own one or more HCP
namespaces.

Object representation

HCP includes a standard POSIX file system called HCP-FS that represents
each object in the default namespace as a set of files. One of these files
has the same name as the object. This file contains the fixed-content
data. When downloaded or opened, this file has the same content as the
originally stored item.

The other files that HCP-FS presents contain object metadata. These files,
which are either plain text or XML, are called metafiles.

HCP-FS presents both data files and metafiles in standard directory
structures. Directories that contain metafiles are called metadirectories.

Object versioning 

Multiple custom metadata annotations 

Namespace ownership by HCP users 

RESTful HTTP/HTTPS API for data access 

Non-RESTful HTTP/HTTPS protocol for data access 

Data access authentication with HTTP/HTTPS 

RESTful HS3 API for data access (compatible with
Amazon® S3)



NDMP protocol for backup and restore 

 (Continued)

Feature
HCP

Namespaces
Default

Namespace

Note: This book describes how to use only the default namespace. For
information on using HCP namespaces, see Using a Namespace.
4 Chapter 1: Introduction to Hitachi Content Platform

Using the Default Namespace

About Hitachi Content Platform
This view of stored objects as conventional files and directories enables
HCP to support routine file-level calls. Users and applications can thus find
fixed-content data and metadata in familiar ways.

For more information on how HCP-FS represents objects, see Chapter 2,
“HCP file system,” on page 15.

Data access

HCP supports access to namespace content through:

• Several industry-standard protocols

• The HCP metadata query API

• The HCP Search Console

• HCP Data Migrator

Namespace access protocols

HCP supports client access to a namespace through these
industry-standard protocols: HTTP, WebDAV, CIFS, and NFS. With these
protocols, you can access namespaces programmatically with applications,
interactively with a command-line tool, or through a GUI. You can use
these protocols to perform actions such as storing objects in the
namespace, viewing and retrieving objects, changing object metadata, and
deleting objects.

HCP allows special-purpose access to the namespace through two
additional protocols: SMTP (for storing email) and NDMP (for backing up
and restoring the namespace).

Objects added to the namespace through any protocol are immediately
accessible through any other protocol.

Namespace access protocols are enabled individually in the HCP system
configuration. If you cannot access the namespace through any given
protocol, you can ask your namespace administrator to enable it.

Note: This book does not address the NDMP protocol. For information on
that protocol, see your namespace administrator.
Chapter 1: Introduction to Hitachi Content Platform 5

Using the Default Namespace

About Hitachi Content Platform
The figure below shows the relationship between original data, namespace
objects, and the supported namespace access protocols.

For information on how to decide which namespace access protocol is most
suitable for your purposes, see “Choosing an access protocol” on
page 192.

HCP metadata query API

The HCP metadata query API lets you search HCP for objects that meet
specified criteria. The API supports two types of queries:

• Object-based queries search for objects based on object metadata.
This includes both system metadata and the content of custom
metadata. The query criteria can also include the object location (that
is, the namespace and/or directory that contains the object). These
queries use a robust query language that lets you combine search
criteria in multiple ways.

Object-based queries search only for objects that currently exist in the
repository.

• Operation-based queries search not only for objects currently in the
repository but also for information about objects that have been
deleted by a user or application or deleted through disposition. Criteria
for operation-based queries can include object status (for example,
created or deleted), change time, index setting, and location.

The metadata query API returns object metadata only, not object data.
The metadata is returned either in XML format, with each object
represented by a separate element, or in JSON format, with each object
represented by a separate name/value pair. For queries that return large
numbers of objects, you can use paged requests.

Original
data

Namespace

Object

Object
data

POSIX
metadata HCP

metadata Custom
metadataA

cc
es

s
pr

ot
oc

ol
sClient
6 Chapter 1: Introduction to Hitachi Content Platform

Using the Default Namespace

About Hitachi Content Platform
For information on using the metadata query API, see HCP Metadata Query
API Reference.

HCP Search Console

The HCP Search Console is an easy-to-use web application that lets you
search for and manage objects based on specified criteria. For example,
you can search for objects that were stored before a certain date or that
are larger than a specified size. You can then delete the objects listed in
the search results or prevent those objects from being deleted. Similar to
the metadata query API, the Search Console returns only object metadata,
not object data.

By offering a structured environment for performing searches, the Search
Console facilitates e-discovery, namespace analysis, and other activities
that require the user to examine the contents of namespaces. From the
Search Console, you can:

• Open objects

• Perform bulk operations on objects

• Export search results in standard file formats for use as input to other
applications

• Publish feeds to make search results available to web users

The Search Console works with either of these two search facilities:

• The HCP metadata query engine — This facility is integrated with
HCP and works internally to perform searches and return results to the
Search Console. The metadata query engine is also used by the
metadata query API.

• The Hitachi Data Discovery Suite (DDS) search facility — This
facility interacts with HDDS, which performs searches and returns
results to the HCP Search Console. HDDS is a separate product from
HCP.

The Search Console can use only one search facility at any given time. The
search facility is selected at the HCP system level. If no facility is selected,
the HCP system does not support use of the Search Console to search
namespaces.

Note: When working with the metadata query engine, the Search
Console is called the Metadata Query Engine Console.
Chapter 1: Introduction to Hitachi Content Platform 7

Using the Default Namespace

About Hitachi Content Platform
Each search facility maintains its own index of objects in each
search-enabled namespace and uses this index for fast retrieval of search
results. The search facilities automatically update their indexes to account
for new and deleted objects and changes to object metadata.

For information on using the Search Console, see Searching Namespaces.

HCP Data Migrator

HCP Data Migrator (HCP-DM) is a high-performance, multithreaded,
client-side utility for viewing, copying, and deleting data. With HCP-DM,
you can:

• Copy objects, files, and directories between the local file system, HCP
namespaces, default namespaces, and earlier HCAP archives

• Delete individual objects, files, and directories and perform bulk delete
operations

• View the content of objects and files

• Rename files and directories on the local file system

• View object, file, and directory properties

• Change system metadata for multiple objects in a single operation

• Add, replace, or delete custom metadata for objects

• Create empty directories

HCP-DM has both a graphical user interface (GUI) and a command-line
interface (CLI).

For information on using HCP-DM, see Using HCP Data Migrator.

Note: Not all namespaces support search. To find out whether the
default namespace is search enabled, see your namespace administrator.
8 Chapter 1: Introduction to Hitachi Content Platform

Using the Default Namespace

About Hitachi Content Platform
HCP nodes

The core hardware for an HCP system consists of servers that are
networked together. These servers are called nodes.

When you access an HCP system, your point of access is an individual
node. To identify the system, however, you can use either the DNS name
of the system or the IP address of an individual node. When you use the
DNS name, HCP selects the access node for you. This helps ensure an
even distribution of the processing load.

For information on when to use an IP address instead of the DNS name,
see “DNS name and IP address considerations” on page 194.

Replication

Replication is the process of keeping selected HCP tenants and
namespaces and selected default-namespace directories in two or more
HCP systems in sync with each other. Basically, this entails copying object
creations, deletions, and metadata changes between systems. HCP also
replicates retention classes. For the default namespace, the HCP system
administrator selects the directories to be replicated.

A replication topology is a configuration of HCP systems that are related
to each other through replication. Typically, the systems in a replication
topology are in separate geographic locations and are connected by a
high-speed wide area network.

You can read from namespaces on all systems to which those namespaces
are replicated. The replication configuration set at the system level
determines on which systems you can write to namespaces.

Replication has several purposes, including:

• If one system in a replication topology becomes unavailable (for
example, due to network issues), another system in the topology can
provide continued data availability.

• If one system in a replication topology suffers irreparable damage,
another system in the topology can serve as a source for disaster
recovery.

• If multiple HCP systems are widely separated geographically, each
system may be able to provide faster data access for some applications
than the other systems can, depending on where the applications are
running.
Chapter 1: Introduction to Hitachi Content Platform 9

Using the Default Namespace

Default namespace operations
• If an object cannot be read from one system in a replication topology
(for example, because a node is unavailable), HCP can try to read it
from another system in the topology. Whether HCP tries to do this
depends on the namespace configuration.

• If a system that participates in a replication topology is unavailable,
HTTP requests to that system can be automatically serviced by another
system in the topology. Whether HCP tries to do this depends on the
namespace configuration.

Default namespace operations

You use namespace access protocols to perform operations in the default
namespace. For more information on using each protocol to perform
namespace operations, see the chapters for the individual protocols.

Some operations relate to specific types of metadata. For more
information on this metadata, see Chapter 3, “Object properties,” on
page 33.

Operation restrictions

The operations that you can perform on a namespace are subject to the
following restrictions:

• The namespace access protocol must support the operation.

• You must be allowed access to the target object.

• The namespace access protocol must be configured to allow access to
the namespace from your client IP address.

• The namespace configuration must allow the operation. The
namespace can be configured to prevent reading, writing, or deleting
objects and metadata.

Note: Not all HCP systems support replication.
10 Chapter 1: Introduction to Hitachi Content Platform

Using the Default Namespace

Default namespace operations
Supported operations

The table below lists the operations HCP supports for the default
namespace and indicates which protocols you can use to perform those
operations.

Operation HTTP WebDAV CIFS NFS SMTP

Write data from files or memory to the namespace to
create an object

   

Transmit data to and from HCP in gzip-compressed
format



Send email directly to the namespace 

View the content of an object    

Copy an object   

Append to existing objects  

Delete an object that’s not under retention    

View a metafile    

Override default index, retention, and shred settings
when storing an object



Change the retention setting for an object or directory    

Hold or release an object    

Change the index setting for an object or directory    

Enable shredding for an object and change the shred
setting for a directory

   

Override default POSIX UID and GID when storing an
object



Override default POSIX permissions when storing an
object



Change the POSIX UID and GID for an object    

Change the POSIX permission settings for an object    

Change the POSIX atime or mtime value for an object   

Store, replace, or delete custom metadata for an object  

Store or retrieve object data and custom metadata in a
single operation



Read custom metadata    

Create an empty directory in the namespace    

View the namespace directory structure, including both
directories and metadirectories

   
Chapter 1: Introduction to Hitachi Content Platform 11

Using the Default Namespace

Default namespace operations
These considerations apply to symbolic links:

• If you use CIFS to create a symbolic link, you can read through the link
only with CIFS. You cannot use CIFS to read through a symbolic link
created with NFS.

• HTTP and WebDAV support for reading through symbolic links is limited
to retrieving object data. Other HTTP and WebDAV operations on
symbolic links may produce unexpected results.

• HCP doesn’t automatically delete a symbolic link when the target object
is deleted. Instead, the link remains and points to a nonexistent
object. To remove the link, you need to explicitly delete it.

Prohibited operations

In the default namespace, HCP never lets you:

• Rename an object.

• Rename a nonempty directory.

• Overwrite a successfully stored object.

• Modify the fixed-content portion of an object.

Rename an empty directory (unless atime
synchronization is enabled)

  

Delete an empty directory    

Create a symbolic link  

Read through a symbolic link to an object    

Delete a symbolic link    

Tip: You can use the HCP Search Console to delete, hold, or release
multiple objects with a single operation.

 (Continued)

Operation HTTP WebDAV CIFS NFS SMTP
12 Chapter 1: Introduction to Hitachi Content Platform

Using the Default Namespace

Default namespace operations
• Delete an object that’s under retention.

• Delete a nonempty directory.

• Shorten the retention period of an object.

• Store a file (other than a file containing custom metadata) or create a
directory or symbolic link anywhere in the metadata structure.

• Delete a metafile (other than a metafile containing custom metadata)
or metadirectory.

• Create a hard link.

Note: If the namespace is configured to allow it, authorized users of
the administrative interface for the namespace can delete objects that
are under retention.
Chapter 1: Introduction to Hitachi Content Platform 13

Using the Default Namespace

Default namespace operations
14 Chapter 1: Introduction to Hitachi Content Platform

Using the Default Namespace

2

HCP file system

The HCP file system (HCP-FS) represents objects in the default namespace
using the familiar file and directory structure. For each object, HCP-FS
presents a data file and a standard set of metafiles. You can view the
object content in the data file. You can view the object metadata in the
metafiles. Similarly, HCP-FS presents a standard set of metafiles for each
directory. You can view the directory metadata in these metafiles.

HCP-FS maintains separate branches of this structure for files that contain
object data and for those that contain object metadata. The structure of
the metadata branch parallels that of the data branch.

This chapter describes the files and directories HCP-FS uses to represent
namespace objects. It also includes considerations for naming objects.

For information on the metadata HCP maintains for objects, see Chapter 3,
“Object properties,” on page 33.
Chapter 2: HCP file system 15

Using the Default Namespace

Root directories
Root directories

HCP-FS presents the data files and metafiles for objects in the default
namespace under two root directories:

• fcfs_data heads the directory structure containing the data files for all
objects. You create the structure under fcfs_data when you store data
and create directories in the namespace. Each data file and directory in
this structure has the same name as the object or directory it
represents. All object and directory names are user-supplied, with the
exception of names for email objects and directories.

• fcfs_metadata heads the directory structure containing all the
metafiles and metadirectories for objects and directories. This
structure parallels the file and directory structure under fcfs_data,
excluding symbolic links. HCP-FS creates this structure automatically
as you store data and create directories in the namespace.

The fcfs in fcfs_data and fcfs_metadata stands for fixed-content file
system. You cannot change the name of either of these directories.

Object naming considerations

When naming objects, directories, and symbolic links, keep these
considerations in mind:

• The name of each item under fcfs_data must conform to POSIX naming
conventions. In particular:

– Object names are case sensitive.

For concerns about case sensitivity with Windows clients, see “CIFS
case sensitivity” on page 170.

– Names can include nonprinting characters, such as spaces and line
breaks.

– All characters are valid except the NULL character (ASCII 0 (zero))
and the forward slash (ASCII 47 (/)), which is the separator
character in directory paths.

– The client operating system, in conjunction with HCP, ensures that
object specifications are converted, as needed, to conform to POSIX
requirements (for example, when using CIFS, backslashes (\) are
converted to forward slashes (/)).
16 Chapter 2: HCP file system

Using the Default Namespace

Object naming considerations
• .directory-metadata is a reserved name.

• The maximum length for the combined directory path and name of an
object, symbolic link, or metafile, starting below fcfs_data or
fcfs_metadata and including separators, is 4,095 bytes.

• For CIFS and NFS, the maximum length of an individual item name is
255 bytes. This applies not only to naming new objects but also to
retrieving existing objects. Therefore, an object stored through HTTP
or WebDAV with a longer name may not be accessible through CIFS or
NFS.

• Some character-set encoding schemes, such as UTF-8, can require
more than one byte to encode a single character. As a result, such
encoding can invisibly increase the length of an individual object name,
causing it to exceed protocol-specific limitations. Or, the encoding can
cause a full object specification (directory path and object name) to
exceed the HCP limit of 4,095 bytes.

• When searching the namespace, HDDS and HCP rely on UTF-8
encoding conventions to find objects by name. If the name of an object
is not UTF-8 encoded, searches for the object by name may return
unexpected results.

• When the metadata query engine or HCP search facility indexes an
object with a name that includes certain characters that cannot be
UTF-8 encoded, it percent-encodes those characters. Searches for
such objects by name must explicitly include the percent-encoded
characters in the name.

Names for email objects stored through the SMTP protocol are
system-generated. For information how HCP names email objects, see
“Naming conventions for email objects” on page 188.

Note: In some cases, an extremely long object name may prevent a
CIFS or NFS client from reading the entire directory that contains the
object. When this happens, attempts to list the contents of the
directory result in an error.
Chapter 2: HCP file system 17

Using the Default Namespace

Sample data structure for examples
Sample data structure for examples

When you view the contents of the default namespace, HCP-FS shows each
directory and data file under fcfs_data. The figure below shows a sample
directory structure headed by fcfs_data. It contains one subdirectory,
named images. images contains three data files named earth.jpg, wind.jpg,
and fire.jpg. These files represent the content of the objects named
earth.jpg, wind.jpg, and fire.jpg, respectively.

All the data files and directories presented by HCP-FS represent objects
and directories that users have added to the default namespace, with one
exception. The fcfs_data directory has a system-generated subdirectory
named .lost+found, which is where HCP puts broken objects in the unlikely
event it finds any. If you see objects in this directory, tell your namespace
administrator.

Metadirectories

Objects and directories in the default namespace each have their own set
of metafiles organized in a metadirectory structure that parallels the data
directory structure. The entire metadirectory structure is under the
fcfs_metadata metadirectory.

Metadirectories for directories

Each directory in the default namespace has a corresponding
metadirectory with the same name (with the exception of fcfs_data for
which the corresponding metadirectory is fcfs_metadata). For example,
the images directory has a corresponding metadirectory named images.

earth.jpg wind.jpg fire.jpg

fcfs_data

images
18 Chapter 2: HCP file system

Using the Default Namespace

Metadirectories
Each of these corresponding metadirectories has a subdirectory named
.directory-metadata. Each .directory-metadata directory has two
subdirectories, info and settings, that contain the metafiles that describe
the corresponding directory under fcfs_data.

Each info directory has a subdirectory named expired that contains
representations of the currently deletable objects in the corresponding
directory under fcfs_data.

The object representations in the expired directory are metafiles only and
have no corresponding data. To see the data for these objects, you need
to look in the directory structure under fcfs_data. Only the owner of an
object can delete that object through the expired directory.

The directory tree under fcfs_metadata mirrors the tree under fcfs_data.
So, if the images directory has a subdirectory named planets, the images
metadirectory also has a subdirectory named planets.

metadirectory corresponding to directory

.directory-metadata

info settings

metadirectory corresponding to directory

.directory-metadata

info settings

expired
Chapter 2: HCP file system 19

Using the Default Namespace

Metadirectories
The figure below shows the metadirectory structure that corresponds to
the fcfs_data and images directory structure.

Metadirectories for objects

Each data file for an object has a corresponding metadirectory with the
same name. The location of this metadirectory mirrors the location of the
data file. For example, the wind.jpg data file is in the images directory, and
the wind.jpg metadirectory is in the images metadirectory.

The figure below shows the metadirectory structure that corresponds to
the data files in the images directory.

fcfs_data fcfs_metadata

images images .directory-metadata

info settings

expired

.directory-metadata

info settings

expired

fcfs_data fcfs_metadata

images images

earth.jpg wind.jpg fire.jpg

earth.jpg wind.jpg fire.jpg
20 Chapter 2: HCP file system

Using the Default Namespace

Metafiles
Metafiles

HCP-FS presents individual metafiles for each piece of HCP-specific
metadata for both objects and directories. It doesn’t present individual
metafiles for POSIX metadata. However, it does present one additional
metafile for both objects and directories. This metafile summarizes both
the HCP-specific and POSIX metadata for an object.

HCP-FS also presents one special metafile for directories. This metafile,
which lists the retention classes defined for the namespace, is the same for
each directory. For information on retention classes, see “Retention
classes” on page 42.

Metafiles contain either plain text or XML, so you can read them easily.
You can view and retrieve metafiles through the HTTP, WebDAV, CIFS, and
NFS protocols. You can also use these protocols to overwrite metafiles that
contain the HCP-specific metadata you can change. By overwriting a
metafile, you change the metadata for the corresponding object.

HCP-FS also shows custom metadata as a metafile. This metafile is
present only when you’ve stored custom metadata for an object. You can
store or replace custom metadata only with the HTTP and WebDAV
protocols.

HCP-FS doesn’t present any metafiles for symbolic links.

Metafiles for directories

HCP-FS presents these metafiles for directories:

• In the info directory:

created.txt
core-metadata.xml
retention-classes.xml

Note: You cannot explicitly change the POSIX metadata for metafiles.
If you specify an mtime value for an object or directory in an HTTP request
or WebDAV command, the mtime values of the corresponding
metadirectories equal the specified value. However, the mtime values for
the metafiles in these directories reflect the time the request executed.
(The atime values of the metafiles equal any specified atime value.)
Chapter 2: HCP file system 21

Using the Default Namespace

Metafiles
• In the settings directory:

dpl.txt
index.txt
retention.txt
shred.txt

For backward compatibility, HCP-FS also presents a metafile named
tpof.txt. This metafile is superseded by dpl.txt.

The table below describes the content of these metafiles. For more
information on this metadata, see Chapter 3, “Object properties,” on
page 33.

Metafile Description

Metafiles in the info directory

created.txt Contains the date the directory was created. This metafile
contains two lines:

• The first line is the date expressed as the number of
seconds since January 1, 1970.

• The second line is the date in this ISO 8601 format:

yyyy-MM-ddThh:mm:ssZ

Z represents the offset from UTC and is specified as:

(+|-)hhmm

For example:

1324287918
2011-12-19T09:45:18-0500

You can view the content of this metafile, but you cannot
change it.
22 Chapter 2: HCP file system

Using the Default Namespace

Metafiles
core-metadata.xml Contains a summary of the HCP-specific and POSIX metadata
for the directory. For example:

<core-metadata xsi:schemaLocation="http://www.hds.com
core-metadata-7_0.xsd">

<version>3</version>
<name>/images</name>
<name-bytes>2F696D61676573</name-bytes>
<object-type>Directory</object-type>
<creation-time>1232376318</creation-time>
<update-time>1232376318</update-time>
<change-time>1232376318</change-time>
<access-time>1232376318</access-time>
<uid>0</uid>
<gid>0</gid>
<mode>40755</mode>
<shred>false</shred>
<index>true</index>
<retention-value>0</retention-value>
<retention-string>Deletion Allowed</retention-string>
<retention-hold>false</retention-hold>
<size>238985</size>
<tpof>1</tpof>
<dpl>2</dpl>
<hash-scheme>SHA-256</hash-scheme>
<hash-value>0B86212A66A792A79D58BB18...</hash-value>
<replicated>true</replicated>
<replicationCollision>false</replicationCollision>
<ingestProtocol>CIFS_NFS</ingestProtocol>
</core-metadata>

The version element identifies the version of the
core-metadata.xml file.

You can view the content of this metafile, but you cannot
change it.

To see the XML schema for this metafile, use this URL:

http://default.default.hcp-domain-name/static/
core-metadata-7_0.xsd

 (Continued)

Metafile Description
Chapter 2: HCP file system 23

Using the Default Namespace

Metafiles
retention-classes.xml Contains a list of the retention classes defined for the
namespace. For each retention class, the metafile shows:

• The retention class name

• The type of value defined for the retention class — either
Offset or Special Value

• The value of the retention class

• Whether objects in the class are automatically deleted
when they expire

• The retention class description

Here’s an example of a retention-classes.xml metafile
that lists two retention classes:

<retention-classes>
 <retention-class>
 <name>HlthReg-107</name>
 <method>Offset</method>
 <value>A+21y</value>
 <allow-disposition>true</allow-disposition>
 <description>Health reg M-DC006-107</description>
 </retention-class>
 <retention-class>
 <name>SEC-Perm</name>
 <method>Special Value</method>
 <value>Deletion Prohibited</value>
 <allow-disposition>false</allow-disposition>
 <description>Permanent record</description>
 </retention-class>
</retention-classes>

You can view the content of this metafile, but you cannot
change it.

For more information on retention classes, see “Retention
classes” on page 42.

 (Continued)

Metafile Description
24 Chapter 2: HCP file system

Using the Default Namespace

Metafiles
Metafiles in the settings directory

dpl.txt Contains the data protection level (DPL) for each new object
stored in the directory. The DPL is the number of copies of
the object HCP must maintain in the namespace to ensure the
integrity and availability of the object.

For example:

2

You can view the content of this metafile, but you cannot
change it.

index.txt Contains the default index setting for objects and directories
added to the directory.

You can view and change the content of this metafile.
Changing this setting does not affect the index setting for
existing objects and directories in the directory.

For details on the content of the index.txt metafile and how
to modify it, see “Index setting” on page 58.

retention.txt Contains the default retention rule, such as a retention period
or class, for objects added to the directory. This rule is also
the default rule for new directories created in the directory.

You can view and change the content of this metafile.
Changing this setting does not affect the retention setting for
existing objects and directories in the directory.

For details on the content of the retention.txt metafile and
how to modify it, see “Retention” on page 39.

shred.txt Contains the default shred setting for objects and directories
added to the directory.

You can view and change the content of this metafile.
Changing this setting does not affect the shred setting for
existing objects and directories in the directory.

For details on the content of the shred.txt metafile and how
to modify it, see “Shred setting” on page 57.

 (Continued)

Metafile Description
Chapter 2: HCP file system 25

Using the Default Namespace

Metafiles
Metafiles for objects

HCP-FS presents these metafiles for objects:

created.txt
dpl.txt
hash.txt
index.txt
replication.txt
retention.txt
shred.txt
core-metadata.xml
custom-metadata.xml

For backward compatibility, HCP-FS also presents a metafile named
tpof.txt. This metafile is superseded by dpl.txt.

The table below describes the metadata in these metafiles. For more
information on this metadata, see Chapter 3, “Object properties,” on
page 33.

Metafile Description

created.txt Contains the date and time at which the object was stored in
the namespace. This metafile contains two lines:

• The first line is the date expressed as the number of
seconds since January 1, 1970.

• The second line is the date in this ISO 8601 format:

yyyy-MM-ddThh:mm:ssZ

Z represents the offset from UTC and is specified as:

(+|-)hhmm

For example:

1324287918
2011-12-19T09:45:18-0500

You can view the content of this metafile, but you cannot
change it.
26 Chapter 2: HCP file system

Using the Default Namespace

Metafiles
dpl.txt Contains the data protection level (DPL) for the object. The
DPL is the number of copies of the object HCP must maintain
in the repository to ensure the integrity and availability of the
object.

For example:

2

You can view the content of this metafile, but you cannot
change it.

hash.txt Contains the name of the cryptographic hash algorithm used
to generate the cryptographic hash value for the object, as
well as the hash value itself. For example:

SHA-256
2BC9AE8640D50145604FB6CFC45A12E5561B40429174CE404A...

HCP calculates the hash value for an object from the object
data.

You can view the content of this metafile, but you cannot
change it.

index.txt Contains the index setting for the object.

You can view and change the content of this metafile.

For details on the content of the index.txt metafile and how
to modify it, see “Index setting” on page 58.

replication.txt Indicates whether the object is replicated, in this format:

replicated=true|false

The value is true only when the object and all its metadata
have been replicated. For example, if you add custom
metadata to a replicated object, the content of the
replicated.txt metafile contents changes to replicated=false.
When the metadata is replicated, the value changes back to
replicated=true.

You can view the content of this metafile, but you cannot
change it.

 (Continued)

Metafile Description
Chapter 2: HCP file system 27

Using the Default Namespace

Metafiles
retention.txt Contains the retention setting for the object.

You can view and change the content of this metafile.

For details on the content of the retention.txt metafile and
how to modify it, see “Retention” on page 39.

shred.txt Contains the shred setting for the object.

You can view and change the content of this metafile.

For details on the content of the shred.txt metafile and how
to modify it, see “Shred setting” on page 57.

 (Continued)

Metafile Description
28 Chapter 2: HCP file system

Using the Default Namespace

Metafiles
core-metadata.xml Contains a summary of the HCP-specific and POSIX metadata
for the object. For example:

<core-metadata xsi:schemaLocation="http://www.hds.com
core-metadata-5_0.xsd">

<version>3</version>
<name>/images/wind.jpg</name>
<name-bytes>2F696D616765732F77696E642E6A7067

</name-bytes>
<object-type>File</object-type>
<creation-time>1232376318</creation-time>
<update-time>1232376318</update-time>
<change-time>1232376318</change-time>
<access-time>1232376318</access-time>
<uid>0</uid>
<gid>0</gid>
<mode>100544</mode>
<shred>false</shred>
<index>true</index>
<retention-value>1462979278</retention-value>
<retention-string>2016-05-11T11:07:58-0400 (DeptReg223,+7y)

</retention-string>
<retention-hold>false</retention-hold>
<size>238985</size>
<tpof>1</tpof>
<dpl>2</dpl>
<hash-scheme>SHA-256</hash-scheme>
<hash-value>0B86212A66A792A79D58BB185EE63A4FADA76...

</hash-value>
<retention-class>DeptReg223</retention-class>
<replicated>true</replicated>
<ingestProtocol>HTTP</ingestProtocol>
</core-metadata>

The version element identifies the version of the
core-metadata.xml file.

You can view the content of this metafile, but you cannot
change it.

To see the XML schema for this metafile, use this URL:

http://default.default.hcp-domain-name/static/
core-metadata-5_0.xsd

 (Continued)

Metafile Description
Chapter 2: HCP file system 29

Using the Default Namespace

Complete metadata structure
Complete metadata structure

The figure on the next page shows the complete metadata structure,
including the metafiles, generated for the sample data structure. It
assumes you’ve added custom metadata for each of the objects.

custom-metadata.xml Contains the custom metadata for the object. This metafile is
present only when the object has custom metadata.

You can add, replace, and delete custom metadata for an
object only if the namespace is configured to allow it. You can
view the custom metadata for an object any time.

For more information on custom metadata, see “Custom
metadata” on page 60.

 (Continued)

Metafile Description
30 Chapter 2: HCP file system

Using the Default Namespace

Complete metadata structure
fc
fs

_d
a

ta
fc

fs
_

m
e

ta
d

a
ta

im
a

g
e

s

ea
rt

h
.jp

g
w

in
d

.jp
g

fir
e

.jp
g

im
a

g
es

.d
ir

e
ct

o
ry

-m
e

ta
d

at
a

in
fo

se
tt

in
g

s

ex
pi

re
d

.d
ire

ct
o

ry
-m

e
ta

d
a

ta

in
fo

se
tt

in
g

s

e
xp

ir
e

d

e
a

rt
h

.jp
g

w
in

d.
jp

g
fir

e
.jp

g

cr
e

a
te

d
.t

xt
d

p
l.t

xt
h

a
sh

.tx
t

in
d

e
x.

tx
t

re
p

lic
at

io
n

.tx
t

re
te

n
tio

n
.tx

t
sh

re
d

.t
xt

co
re

-
m

e
ta

d
a

ta
.x

m
l

cu
st

o
m

-
m

e
ta

d
a

ta
.x

m
l

cr
ea

te
d

.t
xt

d
p

l.t
xt

h
a

sh
.tx

t
in

d
e

x.
tx

t
re

pl
ic

at
io

n.
tx

t
re

te
n

tio
n

.tx
t

sh
re

d
.t

xt
co

re
-

m
et

ad
a

ta
.x

m
l

cu
st

o
m

-
m

et
ad

a
ta

.x
m

l

cr
ea

te
d.

tx
t

d
pl

.t
xt

h
as

h.
tx

t
in

de
x.

tx
t

re
p

lic
a

tio
n

.tx
t

re
te

nt
io

n
.tx

t
sh

re
d.

tx
t

co
re

-m
e

ta
d

a
ta

.x
m

l
cu

st
om

-
m

e
ta

d
at

a
.x

m
l

cr
e

at
ed

.t
xt

co
re

-m
et

ad
a

ta
.x

m
l

re
te

nt
io

n-
cl

as
se

s.
xm

l

d
pl

.t
xt

in
de

x.
tx

t
re

te
nt

io
n

.tx
t

sh
re

d.
tx

t

cr
ea

te
d.

tx
t

co
re

-m
et

ad
at

a.
xm

l
re

te
nt

io
n-

cl
as

se
s.

xm
l

dp
l.t

xt
in

d
e

x.
tx

t
re

te
n

tio
n

.t
xt

sh
re

d
.tx

t

Chapter 2: HCP file system 31

Using the Default Namespace

Complete metadata structure
32 Chapter 2: HCP file system

Using the Default Namespace

3

Object properties

Objects in the default namespace have a number of properties, such as a
retention period and an index setting. These values are defined by the
object metadata. HCP maintains both HCP-specific and POSIX metadata
for objects and directories. For symbolic links, it maintains only POSIX
metadata. Objects can also have custom metadata, which is user
supplied.

You can view all the metadata for objects and modify some of it. The way
you view and modify metadata depends on what the metadata is and on
which namespace access protocol you’re using.

This chapter begins with an overview of the types of metadata HCP
maintains for objects. It then provides detailed information about
metadata you can change, including custom metadata.
Chapter 3: Object properties 33

Using the Default Namespace

Object metadata
Object metadata

HCP supports three types of metadata: HCP-specific, POSIX, and custom.
All the metadata for an object is viewable; only some of it can be changed.

Only the owner of an object or a user with an ID of 0 (zero), otherwise
known as the root user, can modify the HCP-specific and POSIX metadata
for that object. Only a user with write permission for an object or the root
user can add, replace, or delete custom metadata for that object.

For more information on object ownership and permissions, “Ownership
and permissions” on page 36.

HCP-specific metadata
The namespace contains HCP-specific metadata for objects and directories.
HCP-specific metadata consists of:

• The date and time the object was added to the namespace. You can
view this metadata in the created.txt metafile, but you cannot change
it.

• The date and time the object was last changed. This value is returned
in directory listings and you can view it in the core-metadata.xml
metafile. The change time is the time of the most recent of these
events:

– The object was closed after being added to the namespace.

– Any metadata, including custom metadata, was changed.

– The object was recovered from a replica.

– An attempt by the HCP search facility to index the object failed.
When this happens, the change time for the object is set to two
weeks in the future, at which time the HCP search facility tries again
to index it.

– Data was added to an appendable object.

If an object has not changed since ingestion, this value and the value of
the created.txt metafile may not be identical. This is because the
ingest time is set when HCP opens the object for write and the change
time is set when HCP closes the object after ingestion is complete

Note: Only the root user can change the ownership of an object.
34 Chapter 3: Object properties

Using the Default Namespace

Object metadata
The change time is the same as the POSIX ctime attribute value.

• For objects, the data protection level (DPL); for directories, the DPL for
objects added to the directory. The DPL specifies the number of copies
of the object HCP must maintain in the repository to ensure the
integrity and availability of the object. Regardless of the DPL, you see
each object as a single entity.

The DPL is set at the namespace level. You can view this metadata in
the dpl.txt metafile, but you cannot change it. However, namespace
configuration changes can cause it to change.

• For objects only, an indication of whether the object has been
replicated. You can view this metadata in the replication.txt metafile,
but you cannot change it.

• For objects only, the cryptographic hash value of the object, along with
the name of the cryptographic hash algorithm used to generate that
value. You can view this metadata in the hash.txt metafile, but you
cannot change it.

• The index setting for the object. You can view and change this setting
in the index.txt metafile. For more information on index settings, see
“Index setting” on page 58.

• The retention setting for the object. You can view and change this
setting in the retention.txt metafile. For more information on
retention settings, see “Retention” on page 39.

• The shred setting for the object. You can view and change this setting
in the shred.txt metafile. For more information on shred settings, see
“Shred setting” on page 57.

For more information on metafiles, see “Metafiles” on page 21.

POSIX metadata
HCP maintains this POSIX metadata for all objects, directories, and
symbolic links:

• The user ID of the user that owns the item and the group ID of the
owning group. For more information on object ownership, see
“Ownership and permissions” below.

• A POSIX permissions value. For more information on POSIX
permissions, see “Ownership and permissions” below.
Chapter 3: Object properties 35

Using the Default Namespace

Ownership and permissions
• The atime, ctime, and mtime attributes for the item:

– atime (access time) is initially the time the item was added to the
namespace. You can change the value of this attribute. For
objects, changing the value of this attribute has no effect unless the
atime attribute is synchronized with HCP retention settings.

HCP does not automatically update the value of this attribute except
when atime synchronization is in effect. For information on atime
synchronization, see “atime synchronization with retention” on
page 51.

– ctime (change time) is the time of the last change to the item
metadata. The initial value of this attribute is the time the item was
added to the namespace. HCP automatically updates the value
each time the item metadata changes.

You cannot change the value of this attribute.

– mtime (modify time) is initially the time the item was added to the
namespace. You can change the value of this attribute. However,
this has no effect on the item.

HCP does not automatically update the value of this attribute.

Ownership and permissions

All objects have owners, owning groups, and permissions that follow
POSIX standards:

• Each object is associated with one owner, represented by a user ID,
and one owning group, represented by a group ID.

User IDs and group IDs are integers greater than or equal to zero.

• Each object is associated with a POSIX permissions value, which is
made up of three sets of POSIX permissions — one for the user
identified by the POSIX user ID, one for the group identified by the
POSIX group ID, and one for all others. A set of permissions is any
combination of read, write, or execute, including none.

Note: When the atime or mtime value of a subdirectory changes, HCP
does not update the entry for the subdirectory in the parent directory
listing. However, HCP does update the self entry for the subdirectory (that
is, the . entry) in the subdirectory listing.
36 Chapter 3: Object properties

Using the Default Namespace

Ownership and permissions
POSIX permissions determine the actions users can perform on an item
when accessing it on a CIFS or NFS client:

– For an object:

• Read permission lets users view and retrieve the object content.

• Write permission has no effect.

• Execute permission, which applies only to objects created for
executable files, lets users execute the object.

– For a directory:

• Read permission lets users see which objects are in the
directory.

• Write permission lets users add and delete objects in the
directory or rename empty subdirectories.

• Execute permission lets users traverse the directory to get to
known objects in it, but it does not let users read the directory.

Viewing permissions

With the HTTP, WebDAV, or NFS protocol, permissions are represented by
three 3-character strings — one for the owner, one for the owning group,
and one for all others. From left to right, the three character positions in
each string represent read (r), write (w), and execute (x). Each position
has either the character that represents the applicable permission or a
hyphen (-), meaning that the permission is denied.

For example, the string below means that the owner has all permissions
for the object, the owning group has read and execute permissions, and
others have only read permission:

-rwxr-xr--

The initial hyphen (-) indicates that this is an object. For a directory, the
hyphen is replaced by the letter d. For a symbolic link, it is replaced by the
letter l (lower case L).

Note: Even if an object has write permission, its data is secure
because WORM semantics prevent it from being modified.
Chapter 3: Object properties 37

Using the Default Namespace

Ownership and permissions
Windows displays permissions in the Security tab in the Properties window
for an object. These permissions don’t map exactly to the POSIX
permissions used in the default namespace. For information on how
Windows displays the POSIX permissions associated with objects, see
“CIFS permission translations” on page 171.

Octal permission values

Each permission for owner, owning group, and other has a unique octal
value, as shown in the table below.

You can represent permissions numerically by combining these values. For
example, the octal value 755 represents these permissions:

Owner has read, write, and execute permissions (700).
Group has read and execute permissions (050).
Other has read and execute permissions (005).

You need to use these values to specify permissions when using the HTTP
and WebDAV protocols. You can also use them to specify permissions
when using NFS.

Ownership and permissions for new objects

HCP sets the initial owner (UID), owning group (GID), and permissions for
an object when the object is added to the namespace. The values for
these properties depend on the access protocol you’re using. The table
below describes how HCP obtains these values.

Read Write Execute

Owner 400 200 100

Group 040 020 010

Other 004 002 001

Protocol UID and GID Permissions

HTTP Determined by the HTTP
protocol configuration (can be
overridden in the request to
store the object)

Determined by the HTTP
protocol configuration (can be
overridden in the request to
store the object)

WebDAV Determined by the WebDAV
protocol configuration

Determined by the WebDAV
protocol configuration

CIFS with Active Directory®
authentication

UID and GID of the logged-in
user

Determined by the client
38 Chapter 3: Object properties

Using the Default Namespace

Retention
Changing ownership and permissions for existing objects

If you’re the root user, you can change the owner of an existing object. If
you’re either the owner or the root user, you can change the object
permissions. You can make these changes through the HTTP (if HCP is
configured to allow it), WebDAV, CIFS, and NFS protocols.

To change ownership and permissions:

• Through HTTP, you use the HCP-specific CHOWN and CHMOD methods.
For information on these methods, see “Modifying POSIX metadata” on
page 125.

• Through WebDAV, you use the WebDAV PROPPATCH method with the
HCP-specific uid, gid, and mode properties. For information on these
properties, see “HCP-specific metadata properties for WebDAV” on
page 155.

• Through NFS or CIFS, you use the standard technique for that protocol.

For information on changing directory permissions through the CIFS
protocol when using Active Directory, see “Changing directory
permissions when using Active Directory” on page 172.

Retention

Both objects and directories have a retention property. For objects, this
property determines how long the object must remain in the namespace
before it can be deleted. This can range from allowing the object to be
deleted any time to preventing the object from ever being deleted. While
an object cannot be deleted due to its retention property, it is said to be
under retention.

CIFS with anonymous access Determined by the CIFS protocol
configuration

Determined by the client

NFS Determined by the client Determined by the client

SMTP Determined by the SMTP
protocol configuration

Determined by the SMTP
protocol configuration

 (Continued)

Protocol UID and GID Permissions

Note: The namespace can be configured to disallow ownership and
permission changes for objects that are under retention.
Chapter 3: Object properties 39

Using the Default Namespace

Retention
For a directory, the retention property determines the default retention
period for new objects added to that directory.

If an object is immediately placed under retention when it’s stored, it’s
stored with no write permissions. When an existing object is placed under
retention, its write permissions are removed. For more information on
permissions, see “Ownership and permissions” on page 36.

Retention periods

The retention period for an object is the length of time the object must
remain in the repository. A retention period can be a specific length of
time, infinite time, or no time, in which case the object can be deleted at
any time. If you try to delete an object that’s under retention, HCP
prevents you from doing so.

When the retention period for an object expires, the object becomes
deletable, and an entry for it appears in the expired metadirectory that
corresponds to the directory in which the object is stored. For more
information on the expired directory, see “Metadirectories for directories”
on page 18.

Special retention settings
HCP supports three special named retention settings that do not specify
explicit retention periods. You can specify each setting by numeric value
or name.

Default retention settings
Each object and directory in the default namespace has a retention setting.
The default retention setting for a new object is determined by the
retention setting of its parent directory:

• When you add an object to the namespace, its retention setting is
calculated from the retention setting of its parent directory.

Note: The namespace can be configured to allow administrative users to
delete objects under retention. This is called privileged delete.

Value Name Meaning

0 Deletion Allowed Allows the object to be deleted at any time

-1 Deletion Prohibited Prevents the object from being deleted and its
retention setting from being changed

-2 Initial Unspecified Specifies that the object does not yet have a retention
setting
40 Chapter 3: Object properties

Using the Default Namespace

Retention
• When you use SMTP to add email to the namespace, it inherits the
retention setting from the namespace configuration.

• If the default retention setting is in the past, objects that would
otherwise get the default setting are added with a setting of Deletion
Allowed (0).

• When you add a directory to the namespace, it inherits the retention
setting of its parent directory.

You can view the retention setting for an object or directory in its
retention.txt metafile. For information on what this setting looks like, see
“Retention settings in retention.txt” on page 43.

Overriding default retention settings
When you use HTTP to add an object to the namespace, you can override
the default retention setting for that object. For more information on
overriding default retention settings, see “Specifying metadata on object
creation” on page 114.

Automatic deletion
The namespace can be configured to automatically delete objects after
their retention periods expire. For an object to be deleted automatically:

• An explicit retention period must expire. Objects with a retention
setting of Deletion Allowed (0) or Initial Unspecified (-2) are not
automatically deleted.

• If the object is in a retention class, the class must have automatic
deletion enabled.

Holding objects
You can place an object on hold to prevent it from being deleted. An
object that is on hold cannot be deleted by any means. Holding objects is
particularly useful when the objects are needed for legal discovery.
Objects on hold do not appear in the expired metadirectory, even if their
retention periods have expired.

While an object is on hold, you cannot change its retention setting. You
can, however, change its shred setting. If the namespace is configured to
allow changes to custom metadata for objects under retention, you can
also change its custom metadata.
Chapter 3: Object properties 41

Using the Default Namespace

Retention
You can also release an object from hold. When an object is released, its
previous retention setting is again in effect.

Retention classes

A retention class is a named retention value that, when used as the
retention setting for an object, specifies how long the object must remain
in the repository. This value can be:

• A duration after object creation. For example, a retention class named
HlthReg-107 could have a duration of 21 years. All objects that have
that class as their retention setting could not be deleted for 21 years
after they’re created.

• One of these special values:

– Deletion Allowed (0)

– Deletion Prohibited (-1)

– Initial Unspecified (-2)

Retention class duration values use this format:

A+yearsy+monthsM+daysd

In this format, A represents the time at which the object was created. For
example, this value specifies a retention period of one year, two months,
and three days:

A+1y+2M+3d

The duration specification can omit portions with zero values. For
example, this value specifies a six-month retention period:

A+6M

You can use retention classes to consistently manage data that must
conform to a specific retention rule. For example, if local law requires that
medical records be kept for a specific number of years, you can use a
retention class to enforce that requirement.

Tip: You can use the HCP Search Console to place multiple objects on
hold or release multiple objects at the same time.
42 Chapter 3: Object properties

Using the Default Namespace

Retention
Namespace administrators create retention classes. When creating a
class, the administrator specifies the class name, the value, and whether
to automatically delete objects in the class when their retention periods
expire. The administrator can also specify a description of the class.

These rules apply to retention class values:

• Administrators can increase the duration of retention classes.

• The namespace can be configured to allow administrators to decrease
retention class durations or delete retention classes.

• Any change to a retention class duration changes the retention periods
of objects in the class.

• If a retention class is deleted, the objects in that class have a retention
setting of Deletion Prohibited (-1) and cannot be deleted.

If a new retention class is created with the same name as a deleted
retention class, existing objects in the deleted class get the retention
setting of the new class.

You can assign a retention class to an object either when you create the
object or at a later time. For information on the when you can replace the
retention class assigned to an object, see “Changing retention settings” on
page 45.

Retention settings in retention.txt

The retention.txt metafile for an object shows you the current retention
setting for that object. These settings are different for objects and
directories.

Note: Automatic deletion must be enabled for the namespace for objects
in retention classes to be automatically deleted. For more information on
automatic deletion, see “Automatic deletion” on page 41.

Tip: For a list of the retention classes defined for the namespace, look at
the retention-classes.xml metafile for any directory. For information on
this metafile, see “Metafiles for directories” on page 21.
Chapter 3: Object properties 43

Using the Default Namespace

Retention
retention.txt settings for an object
The table below shows the possible retention settings in retention.txt for
an object.

retention.txt settings for a directory
The table below shows the possible retention settings in retention.txt for a
directory.

0
Deletion Allowed

0
Deletion Allowed
Hold

0
Deletion Allowed (retention-class-name, 0)

0
Deletion Allowed (retention-class-name, 0)
Hold

-1
Deletion Prohibited

-1
Deletion Prohibited
Hold

-1
Deletion Prohibited (retention-class-name, -1)

-1
Deletion Prohibited (retention-class-name, -1)
Hold

-2
Initial Unspecified

-2
Initial Unspecified
Hold

-2
Initial Unspecified (retention-class-name, -2)

-2
Initial Unspecified (retention-class-name, -2)
Hold

retention-period-end-seconds-past-1970-1-1
retention-period-end-datetime

retention-period-end-seconds-past-1970-1-1
retention-period-end-datetime
Hold

retention-period-end-seconds-past-1970-1-1
retention-period-end-datetime (retention-class-

name, retention-class-duration)

retention-period-end-seconds-past-1970-1-1
retention-period-end-datetime (retention-class-

name, retention-class-duration)
Hold

0
Deletion Allowed

0
Deletion Allowed (retention-class-name, 0)

-1
Deletion Prohibited

-1
Deletion Prohibited (retention-class-name, -1)

-2
Initial Unspecified
44 Chapter 3: Object properties

Using the Default Namespace

Retention
retention.txt settings for deleted retention classes
If the retention class assigned to an object or directory is deleted, the
retention.txt metafile for the object or directory then contains:

• A retention setting of Deletion Prohibited (-1)

• The name of the deleted retention class

• A retention class value of undefined

For example, suppose you assign an object to the HlthReg-107 retention
class, and then the class is deleted. The retention.txt metafile for the
object then contains:

-1
Deletion Prohibited (HlthReg-107, undefined)

If a new retention class named HlthReg-107 is created, existing objects
and directories assigned to the HlthReg-107 retention class get the
retention setting of the new class.

Changing retention settings

If you’re either the owner of an object or directory or the root user, you can
change its retention setting:

• For an object:

– If the object is under retention, you can change its retention setting
to lengthen the retention period but not to shorten it.

– If the object is not under retention, you can change its retention
setting to any time — past or present. If you change it to a time in
the past, the object is immediately deletable.

-2
Initial Unspecified (retention-class-name, -2)

retention-offset

retention-offset (retention-class-name, retention-class-value)

retention-period-end-seconds-past-1970-1-1

retention-period-end-datetime

 (Continued)
Chapter 3: Object properties 45

Using the Default Namespace

Retention
• For a directory, you can change the setting to any valid value (see the
table below). Changing the retention setting for a directory affects only
new objects and directories added to the directory. It does not affect
any existing objects or directories.

• For an object that’s in a retention class, you can replace the class with
another class with an equal or greater retention period, but you cannot
replace the class with an explicit retention setting, such as -1 (Deletion
Prohibited) or a specific date and time.

To change the retention setting for an object, you overwrite its
retention.txt metafile. In the new file, you specify a single value that tells
HCP what change to make. This value must be on a single line. To ensure
that HCP processes the value correctly, end the line with a carriage return.

The table below shows the values you can use to change the retention
setting for an object. These values are not case sensitive.

Tip: With Windows and Unix, you can also use the echo command to
insert the new value into the retention.txt metafile.

Value Effect

0 (zero)
or
Deletion Allowed

Allows the object to be deleted at any time. You can assign this value to
an object only when you add it to the namespace or when its retention
setting is -2. You can assign it to a directory at any time.

The value -0 is equivalent to 0 (zero).

-1
or
Deletion Prohibited

Prevents the object from being deleted and its retention setting from being
changed. The object is stored permanently.

You can assign this value to an object or directory at any time.

If an object is assigned to a retention class and that class is then deleted,
the retention setting for that object changes to -1.

-2
or
Initial Unspecified

Specifies that the object does not yet have a retention setting. You can
assign this value to a directory at any time. You can assign it directly to an
object when you add the object to the namespace with HTTP (see
“Specifying metadata on object creation” on page 114). You can also
directly change the retention setting for an object from 0 to -2.

While an object has a retention setting of -2, you cannot delete it. You can
change -2 to any other retention setting for both objects and directories.
46 Chapter 3: Object properties

Using the Default Namespace

Retention
datetime Prevents the object from being deleted until the specified date and time.
You can assign this value to an object if the specified date and time is later
than the current retention setting for the object. You cannot assign it to an
object for which the current retention setting is -1.

You can assign this value to a directory at any time, as long as the
specified date and time are later than the current date and time.

For a description of the datetime format, see “Specifying a date and time”
below.

Note: If the retention setting for a directory becomes earlier than
the current time (due to the passage of time), objects added to
that directory are immediately expired and, therefore, deletable.

offset Prevents the object from being deleted until the date and time derived
from the specified offset. You can assign this value to an object at any
time, except when its current retention setting is -1.

You can assign this value to a directory at any time.

For an object, an offset is used to calculate a new retention setting. As a
result, when you next look in retention.txt, you see the calculated
value, not the specified offset.

For a directory, the specified offset becomes the retention setting. As a
result, when you next look in retention.txt, you see the offset
specification.

For a description of the offset format, see “Specifying an offset” on
page 49.

 (Continued)

Value Effect
Chapter 3: Object properties 47

Using the Default Namespace

Retention
Specifying a date and time

You can set retention by specifying a date and time in either of these
formats:

• Time in seconds since January 1, 1970, at 00:00:00. For example:

1450137600

The calendar date that corresponds to 1450137600 is Tuesday,
December 15, 2015, at 00:00:00 EST.

C+retention-class-name Prevents the object from being deleted until the period of time specified by
the retention class has elapsed.

You can assign this value to an object if any one of these is true:

• The current retention period for the object has expired.

• The current retention period for the object has not expired, and the
retention class results in a retention period that is longer than the
current retention period.

• The current retention setting for the object is 0 or -2.

• The current retention setting for the object is -1 and the class has a
value of -1.

• The object is in a retention class with a value of 0 or -2 and the new
class has a value of 0 or -2.

• The object is in a retention class and the new class either doesn’t
change or increases the retention period for the object. For purposes
of comparison, a class with a retention value of -1 has the longest
possible retention period and a class with a retention value of 0 has
the shortest possible retention period.

You can assign this value to a directory at any time.

The retention class you assign must already be defined for the namespace.

Retention class names are not case sensitive.

Hold Prevents the object from being deleted until it is released. You can assign
this value to an object at any time. You cannot assign this value to a
directory.

Unhold Releases an object that’s on hold. When an object is released, its previous
retention setting is again in effect.

 (Continued)

Value Effect
48 Chapter 3: Object properties

Using the Default Namespace

Retention
• Date and time in this ISO 8601 format:

yyyy-MM-ddThh:mm:ssZ

Z represents the offset from UTC and is specified as:

(+|-)hhmm

For example, 2015-11-16T14:27:20-0500 represents the start of the
20th second into 2:27 PM, November 16, 2015, EST.

If you specify certain forms of invalid dates, HCP automatically adjusts the
retention setting to make a real date. For example, if you specify
2015-11-33, which is three days past the end of November, HCP changes it
to 2015-12-03.

Specifying an offset

You can set retention by specifying an offset from:

• The time at which the object was added to the namespace

• The current retention setting for the object

• The current time

Because you can only extend a retention period, the offset must be a
positive value.

Offset syntax
To use an offset as a retention setting, specify a standard expression that
conforms to this syntax:

^([RAN])?([+-]\d+y)?([+-]\d+M)?([+-]\d+w)?([+-]\d+d)?([+-]\d+h)?([+-]\d+m)?([+-]\d+s)?

The table below explains this syntax.

Character Description

^ Start of the expression

() Sequence of terms treated as a single term

? Indicator that the preceding term is optional

[] Group of alternatives, exactly one of which must be used

+ Plus
Chapter 3: Object properties 49

Using the Default Namespace

Retention
In an expression that specifies an offset:

• The time measurements must go from the largest unit to the smallest
(that is, in the order in which they appear in the syntax).

• R, A, N, and the characters that represent time measurements are case
sensitive.

• You can omit a sequence of terms in which \d+ is zero.

- Minus

R* The current retention setting for the object. R is meaningful only
when changing the retention setting for an object

A* The time at which the object was added to the repository

N* The current time

\d+ An integer in the range 0 (zero) through 9,999

y Years

M Months

w Weeks

d Days

h Hours

m Minutes

s Seconds

*R, A, and N are mutually exclusive. If you don’t include any of them, the default is R.

 (Continued)

Character Description

Tip: When you add an object to the namespace or change the retention
setting for a directory, R, A, and N are equivalent; that is, they all represent
the current date and time. Because A and N are more intuitively
meaningful, you should use either one of them instead of R for these
purposes.
50 Chapter 3: Object properties

Using the Default Namespace

Retention
Offset examples
Here are some examples of using an offset to extend a retention period;
these examples use the NFS protocol:

• This command changes the retention setting for the images directory to
100 years past the time objects are added to that directory:

echo "A+100y" > /metadatamount/images/.directory-metadata/settings/retention.txt

• This command sets the end of the retention period for the wind.jpg
object to 20 days minus five hours past the current date and time:

echo "N+20d-5h" > /metadatamount/images/wind.jpg/retention.txt

• This command extends the current retention period for wind.jpg by two
years and one day:

echo "R+2y+1d" > /metadatamount/images/wind.jpg/retention.txt

atime synchronization with retention

Some file systems support the use of the POSIX atime attribute to set
retention. To take advantage of this existing mechanism, HCP gives you
the option of synchronizing atime values with HCP retention settings.
When these properties are synchronized, changing one for an object
causes an equivalent change in the other.

Your namespace administrator enables or disables atime synchronization
for the namespace. While atime synchronization is enabled, atime values
are automatically synchronized with retention settings for objects
subsequently added to the namespace except in these cases:

• The object is added through NFS with an initial retention setting of
Deletion Allowed.

• The object is added through any protocol with an initial retention
setting that is either Initial Unspecified or a retention class.

• The namespace supports appendable objects.

In these cases, the atime value of an object is set to the time the object is
stored.
Chapter 3: Object properties 51

Using the Default Namespace

Retention
For any given object, if atime synchronization was not enabled
automatically, you can enable it manually. For more information on doing
this, see “Triggering atime synchronization for existing objects” on
page 52.

While atime synchronization is enabled for the namespace, the rules for
changing retention settings also apply to changing atime values. You
cannot use atime to shorten a retention period, nor can you use it to
specify a retention period if the current setting is Deletion Prohibited.
Additionally, you cannot change the atime value if the object is on hold.

atime synchronization does not work with objects in retention classes.
When you assign an object to a retention class, the atime value for the
object does not change, even if the atime value had previously been
synchronized with the retention setting. Triggering atime synchronization
for an object in a retention class has no effect.

By default, atime synchronization is disabled when the namespace is
created. Ask your namespace administrator whether it has been enabled.

Triggering atime synchronization for existing objects

While atime synchronization is enabled, you can use either the atime
attribute or the retention.txt metafile to trigger synchronization for an
individual existing object (for which synchronization is not currently in
effect):

• To use the atime attribute to trigger synchronization for an object with
retention currently set to a specific date and time in the future, use
HTTP, CIFS, or NFS to make a valid change to the value of the atime
attribute.

• To use the atime attribute to trigger synchronization for an object with
retention currently set to either Deletion Allowed or Initial Unspecified:

1. Check that the atime value is the retention setting you want. If it
isn’t, be sure to change it before performing step 2.

Note: If both atime synchronization is enabled and appendable objects
are supported, do not use retention.txt to change object retention
settings. Use only the atime attribute.

Note: With atime synchronization enabled, you cannot rename empty
directories. This includes any directories you create using CIFS, which, by
default, are named New Folder.
52 Chapter 3: Object properties

Using the Default Namespace

Retention
2. Do one of these:

• If the object has any write permissions for the owner, owning
group, or other, use HTTP, CIFS, or NFS to remove them.

• If the object has no write permissions for the owner, owning
group, or other, use HTTP, CIFS, or NFS to add at least one and
then remove all you added.

Changing permissions through WebDAV does not trigger atime
synchronization.

• To use the retention.txt metafile to trigger atime synchronization for
any object, regardless of its current retention setting, change the
retention setting for the object to any valid value except a retention
class.

Triggering atime synchronization for an object creates an association
between its atime value and retention setting. Subsequent changes to
POSIX permissions do not remove this association.

Note: Read and execute permissions have no effect on this
process.

Important:

• Some commands you can use to add objects to the namespace,
such as the Unix cp command, have options for preserving the
original permissions and timestamps. These commands may
modify permissions and atime values in a way that causes the
stored object to become read-only, thereby triggering retention.
If atime synchronization is enabled, you should review the use
of these commands to ensure they do not result in unexpected
retention settings.

• Existing applications ported to HCP may remove write
permissions from objects without regard to their atime values.
If atime synchronization is enabled for the namespace, this can
have the unintended effect of giving some objects infinite
retention. Be sure to review ported applications for this
behavior before running them.
Chapter 3: Object properties 53

Using the Default Namespace

Retention
Removing the association

The association between the atime value and retention setting for an object
remains in effect until one of these happens:

• The retention period for the object expires.

• You assign the object to a retention class.

• Your namespace administrator disables atime synchronization for the
namespace. Any changes to atime attributes or retention settings
made after synchronization is disabled are independent of each other.
If your namespace administrator subsequently reenables atime
synchronization for the namespace, these properties remain
independent until you trigger synchronization again for the individual
object, as described in “Triggering atime synchronization for existing
objects” above.

How atime synchronization works

atime values and retention settings have these general correspondences:

• atime values in the future correspond to specific retention settings in
the future.

• atime values more than 24 hours in the past correspond to retention
settings that prevent deletion.

• atime values 24 hours or less in the past correspond to retention
settings that permit immediate deletion.
54 Chapter 3: Object properties

Using the Default Namespace

Retention
The table below shows the effects of valid atime changes on retention
settings for an object with atime synchronization in effect.

The table below shows the effects of valid changes to retention settings on
atime values for an object with atime synchronization in effect.

Changing the atime value to
When the current retention

setting is
Changes the retention

setting to

A time later than the current
date and time

Initial Unspecified (-2) or
Deletion Allowed (0)

The new time of the atime
attribute

A time later than the current
retention setting

A specific date and time The new time of the atime
attribute

A time more than 24 hours
before the current date and
time*

Initial Unspecified (-2),
Deletion Allowed (0), or
a specific date and time

Deletion Prohibited

A time 24 hours or less before
the current date and time*

Initial Unspecified (-2) or
Deletion Allowed (0)

The new time of the atime
attribute, which immediately
makes the object expired and
deletable

*Twenty-four hours is the default setting for this threshold. If you want it changed, please contact
your namespace administrator.

Changing the retention
setting to

When the current retention
setting is Changes the atime value to

A time later than the current
date and time

Initial Unspecified (-2) or
Deletion Allowed (0)

The same time as the new
retention setting

A time later than the current
retention setting

A specific date and time The same time as the new
retention setting

A time before the current date
and time

Initial Unspecified (-2) or
Deletion Allowed (0)

The same time as the new
retention setting

Deletion Allowed Initial Unspecified (-2) January 1, 1970 00:00:00 GMT

Deletion Prohibited Initial Unspecified (-2),
Deletion Allowed (0), or
a specific date and time

The current date and time minus
the threshold beyond which
atime sets retention to
Deletion Prohibited*

*Twenty-four hours is the default setting for this threshold. If you want it changed, please contact
your namespace administrator.
Chapter 3: Object properties 55

Using the Default Namespace

Retention
If atime synchronization has already been triggered for an object and the
object is under retention, you cannot use atime to change its retention
setting while HCP is configured to disallow permission changes for objects
under retention. However, you can modify the setting in retention.txt,
and, when you do so, the atime value is synchronized with the new
retention setting.

atime synchronization example

The following example shows how to use the atime attribute to trigger
retention for the existing wind.jpg object after atime synchronization has
been enabled for the namespace; the example uses the NFS protocol:

1. Optionally, check the current retention setting for the wind.jpg object:

cat /metadatamount/images/wind.jpg/retention.txt
0
Deletion Allowed

2. Optionally, check the current permissions for the wind.jpg object:

ls -l /datamount/images/wind.jpg
-r--r--r-- 1 root root 23221 Nov 19 09:45 /datamount/images/wind.jpg

Notice that the object has no write permissions.

3. Set the atime attribute for the wind.jpg object:

touch -a -t 201512310000 /datamount/images/wind.jpg

4. Optionally, verify step 4:

stat /datamount/images/wind.jpg
 File: "/datamount/images/wind.jpg"
 Size: 23221 Blocks: 112 IO Block: 32768 regular file
Device: 15h/21d Inode: 18 Links: 1
Access: (0444/-r--r--r--) Uid: (0/ root) Gid: (0/ root)
Access: 2015-12-31 00:00:00.000000000 -0500
Modify: 2011-11-19 09:45:18.000000000 -0500
Change: 2011-11-23 13:10:17.000000000 -0500

Note: To set the value of the atime attribute, you can use the HTTP
TOUCH method, Windows SetFileTime library call, the Unix utime library
call, or the Unix touch command.
56 Chapter 3: Object properties

Using the Default Namespace

Shred setting
5. Add write permissions to the wind.jpg object:

chmod a+w /datamount/images/wind.jpg

6. Remove all write permissions from the wind.jpg object:

chmod a-w /datamount/images/wind.jpg

7. Optionally, verify that the retention setting has changed to match the
atime value:

cat /metadatamount/images/wind.jpg/retention.txt
1451520000
2015-12-31T00:00:00-0500

Shred setting

Shredding, also called secure deletion, is the process of deleting an
object and overwriting the places where its copies were stored in such a
way that none of its data or metadata, including custom metadata, can be
reconstructed.

About shred settings
Every object has a shred setting that determines whether it will be
shredded when it’s deleted. Every directory has a shred setting. This
setting is the default shred setting for each object added to the directory.
However, email stored using SMTP gets its shred setting from the
namespace configuration.

When you use HTTP to add an object to the namespace, you can override
the default shred setting for that object as well as for any new directories
in the object path. For more information on overriding default shred
settings, see “Specifying metadata on object creation” on page 114.

You can view the shred setting for an object in its shred.txt metafile. In
this metafile:

• A value of 0 (zero) means don’t shred.

• A value of 1 (one) means shred.

By default, the shred setting for the fcfs_data directory is zero.

Tip: As a general rule, multiple objects with the same content should all
have the same shred setting.
Chapter 3: Object properties 57

Using the Default Namespace

Index setting
Changing shred settings
If you’re either the owner of an object or the root user, you can change its
shred setting:

• For an object, you can change the shred setting from 0 (zero) to 1
(one) but not from 1 (one) to 0 (zero).

• For a directory, you can change the shred setting either way.

Changing the shred setting for a directory affects only new objects added
to the directory. It does not affect any existing objects. If you want any of
the existing objects to be shredded, you need to change their shred
settings individually.

To change the shred setting for an object, you overwrite its shred.txt
metafile. In the new file, you specify only the new value.

Index setting

Each object has an index setting that is either true or false. The setting is
present regardless of whether the namespace supports search operations.

The metadata query engine uses the index setting to determine whether to
index custom metadata for an object:

• For objects with an index setting true, the metadata query engine
indexes custom metadata.

• For objects with an index setting false, the metadata query engine does
not index custom metadata.

The HCP search facility uses the index setting to determine whether to
index an object at all:

• The HCP search facility indexes objects with an index setting true.

• The HCP search facility does not index objects with an index setting
false.

Metadata query API requests can use the index setting as a search
criterion. Additionally, third-party applications can use this setting for their
own purposes.

Tip: With Windows and Unix, you can also use the echo command to
insert the new value into the shred.txt metafile.
58 Chapter 3: Object properties

Using the Default Namespace

Index setting
You can view the index setting for an object or directory in its index.txt
metafile. In this metafile:

• A value of 1 (one) means true.

• A value of 0 (zero) means false.

Default index settings
Every directory has an index setting. This setting is the default index
setting for each object added to the directory. However, email stored using
SMTP gets its index setting from the namespace configuration.

When you use HTTP to add an object to the namespace, you can override
the default index setting for that object as well as for any new directories
in the object path. For more information on overriding default index
settings, see “Specifying metadata on object creation” on page 114.

By default, the index setting for the fcfs_data directory is 1 (one).

Changing index settings
If you’re either the owner of an object or directory or the root user, you can
change its index setting.

Changing the index setting for a directory affects only new objects added
to the directory. It does not affect any existing objects. To change the
index setting of an existing object, change the setting for that object.

Changing the index setting for an object causes these changes to the
indexes maintained by the metadata query engine and the HCP search
facility:

• If you change the index setting of an object from true to false:

– The metadata query engine removes the custom metadata for the
object from its index.

– If the HCP search facility is enabled, it removes the object from its
index.

• If you change the index setting of an object from false to true:

– The metadata query engine indexes the custom metadata for the
object.

– If the HCP search facility is enabled, it indexes the object.
Chapter 3: Object properties 59

Using the Default Namespace

Custom metadata
To change the index setting for an object or directory, you overwrite its
index.txt metafile. In the new file, you specify only the new value.

Custom metadata

Custom metadata is user-supplied descriptive information about an object.
You store this metadata in custom-metadata.xml in the metadirectory that
corresponds to the object. For example, the custom metadata file for the
wind.jpg object in the images directory is:

fcfs_metadata/images/wind.jpg/custom-metadata.xml

Custom metadata is stored as a unit. You can add, replace, or delete it in
its entirety. You cannot modify it in place.

Custom metadata files
Custom metadata is typically specified using XML, but this is not required.
The namespace configuration determines whether HCP checks that custom
metadata is well-formed XML. While checking is enabled, if you try to
store custom metadata that is not well-formed XML, HCP rejects it.

Here’s an example of custom metadata that is well-formed XML:

<?xml version="1.0" ?>
<weather>

<location>Massachusetts</location>
<date>20110130</date>
<duration_secs>180</duration_secs>
<temp_F>

<temp_high>31</temp_high>
<temp_low>31</temp_low>

</temp_F>
<velocity_mph>

<velocity_high>22</velocity_high>
<velocity_low>17</velocity_low>

</velocity_mph>
</weather>

The metadata query engine and the HCP search facility can index the
content of custom metadata. In this case, users can search for objects
based on their custom metadata. If such a search results in a match, HCP
returns the object for which the custom metadata was stored, not the
custom-metadata.xml file.

Tip: With Windows and Unix, you can also use the echo command to
insert the new value into the index.txt metafile.
60 Chapter 3: Object properties

Using the Default Namespace

Custom metadata
Working with custom metadata
To add, replace, and delete custom metadata, you need to use the HTTP or
WebDAV protocol. HCP does not support custom metadata operations
through other protocols. For an example of storing custom metadata with
HTTP, see “Storing custom metadata” on page 131.

With the HTTP protocol, you can use a single request to store or retrieve
both object data and custom metadata. With WebDAV, you need to store
or retrieve the custom metadata separately from the object data.

With WebDAV, you can use the custom-metadata.xml metafile to store dead
properties. For more information on storing dead properties as custom
metadata, see “Using the custom-metadata.xml file to store dead
properties” on page 160.

The namespace configuration determines what you can do with custom
metadata for objects that are under retention. The namespace can be set
to:

• Allow all custom metadata operations for objects under retention

• Allow only the addition of new custom metadata for objects under
retention and disallow replacement or deletion of existing custom
metadata

• Disallow adding, replacing, or deleting custom metadata for objects
under retention

Errors when saving custom metadata
An attempt to save custom metadata may fail with a 400 (Bad Request)
error in any of these cases:

• The namespace has custom metadata XML checking enabled, and the
custom metadata is not well-formed XML.

• The custom metadata XML has a large number of different elements
and attributes.

In this case, try restructuring the XML to have fewer different elements
and attributes. For example, try concatenating multiple element
values, such as the different parts of an address, to create a new value
for a single element.

If you cannot restructure the XML to prevent failures, ask your
namespace administrator about reconfiguring the namespace to
prevent HCP from checking whether custom metadata XML is well
formed.
Chapter 3: Object properties 61

Using the Default Namespace

Replication collisions
• A number of clients try to store custom metadata for multiple objects at
the same time.

In this case, limit the number of concurrent requests from clients to the
namespace.

Replication collisions

If users can write to multiple systems in a replication topology, collisions
can occur when different changes are made to the same objects on
different systems and those changes are then replicated. The way HCP
handles collisions that occur due to replication depends on the type of
collision. However, the general rule is that more recent changes have
priority over conflicting less recent changes.

For an introduction to replication, see “Replication” on page 9.

Object content collisions

An object content collision occurs when these events occur in the order
shown:

1. An object is created with the same name in the same directory on two
systems in a replication topology, but the object has different content
on the two systems.

2. The object on one of the systems is replicated to the other system.

When an object content collision occurs, the more recently created object
keeps its name and location. The other object is either moved to the
.lost+found directory or renamed, depending on the namespace
configuration.

When HCP moves an object to the .lost+found directory, the full object
path becomes .lost+found/replication/system-generated-directory/
old-object-path.

When renaming an object due to a content collision, HCP changes the
object name to object-name.collision. If the new name is already in use,
HCP changes the object name to object-name.1.collision. If that name is
already in use, HCP successively increments the middle integer by one
until a unique name is formed.
62 Chapter 3: Object properties

Using the Default Namespace

Replication collisions
Objects that have been relocated or renamed due to content collisions are
flagged as replication collisions in their system metadata. The
replicationCollision element in the core-metadata.xml file indicates whether
an object is flagged as a replication collision.

You can use the metadata query API to search for objects that are flagged
as replication collisions. For information the metadata query API, see HCP
Metadata Query API Reference.

If an object that’s flagged as a replication collision changes (for example, if
its retention period is extended), its collision flag is removed. If you create
a copy of a flagged object with a new name, the collision flag is not set on
the copy.

Depending on the namespace configuration, objects flagged as replication
collisions may be automatically deleted after a set number of days. The
days are counted from the time the collision flag is set. If the collision flag
is removed from an object, the object is no longer eligible for automatic
deletion.

System metadata collisions

A system metadata collision occurs when these events occur in the order
shown:

1. Different changes are made to the system metadata for a given object
on each of two systems in a replication topology.

2. The changed system metadata on one of the systems is replicated to
the other system.

For example, suppose a user on one system changes the shred setting for
an object while a user on the other system changes the index setting for
the same object. When the object on either system is replicated to the
other system, a system metadata collision occurs.

If a collision occurs when changed system metadata for a given object is
replicated from one system (system A) in a replication topology to another
system (system B) in the topology:

• For changed system metadata other than the retention setting and hold
status:

– If the last change made on system A is more recent than the last
change made on system B, HCP changes the system metadata on
system B to match the system metadata on system A.
Chapter 3: Object properties 63

Using the Default Namespace

Replication collisions
– If the last change on system B is more recent than the last change
on system A, HCP does not change the system metadata on system
B.

• For a changed retention setting:

– If the retention setting on system A specifies a longer retention
period than does the retention setting on system B, HCP changes
the retention setting on system B to match the retention setting on
system A.

– If the retention setting on system B specifies a longer retention
period than does the retention setting on system A, HCP does not
change the retention setting on system B.

• For a changed hold status:

– If the object is on hold on system A but not on system B, HCP places
the object on hold on system B.

– If the object is on hold on system B but not on system A, HCP
leaves the object on hold on system B.

Here are some examples of how HCP handles collisions when changed
system metadata for a given object is replicated from one system (system
A) in a replication topology to another system (system B) in the topology.

Example 1
The object starts out on both system A and system B with these system
metadata settings:

Shred: false
Index: false

The table below shows a sequence of events in which the system metadata
for the object is changed and the changes are then replicated.

Sequence Event

1 On system A, a client changes the shred setting to true.

2 On system B, a client changes the index setting to true.

3 The changes on system A are replicated to system B. The resulting
settings for the object on system B are:

Shred: false
Index: true
64 Chapter 3: Object properties

Using the Default Namespace

Replication collisions
Example 2
The object starts out on both system A and system B with these system
metadata settings:

Retention: Initial Unspecified
Shred: false
Index: false

The table below shows a sequence of events in which the system metadata
for the object is changed and the changes are then replicated.

Example 3
The object starts out on both system A and system B with these system
metadata settings:

Retention: Initial Unspecified
Hold: true
Shred: false
Index: false

The table below shows a sequence of events in which the system metadata
for the object is changed and the changes are then replicated.

Sequence Event

1 On system A, a client changes the retention setting to Deletion
Prohibited.

2 On system B, a client changes the retention setting to Deletion Allowed.

3 On system B, a client changes the index setting to true.

4 On system A, a client changes the shred setting to true.

5 The changes on system A are replicated to system B. The resulting
settings for the object on system B are:

Retention: Deletion Prohibited
Shred: true
Index: false

Sequence Event

1 On system A, a client changes the retention setting to Deletion Allowed.

2 On system B, a client changes the retention setting to Deletion
Prohibited.

3 On system B, a client changes the index setting to true.

4 On system A, a client changes the shred setting to true.
Chapter 3: Object properties 65

Using the Default Namespace

Replication collisions
Custom metadata collisions

A custom metadata collision occurs when these events occur in the order
shown:

1. One of these changes occurs:

– Custom metadata is added to a given object on each of two systems
in a replication topology, but the added custom metadata is
different on the two systems.

The addition of custom metadata to an object on only one of the
systems does not result in a custom metadata collision. Instead,
the new custom metadata is replicated from that system to the
other system without conflict.

– The custom metadata for a given object is replaced on each of two
systems in a replication topology, but the replacement custom
metadata is different on the two systems.

– The custom metadata for a given object is replaced on one system
in a replication topology, and the same custom metadata is deleted
on another system in the topology.

2. The change made on one of the systems is replicated to the other
system.

5 On system A, a client releases the object from hold.

6 The changes on system A are replicated to system B. The resulting
settings for the object on system B are:

Retention: Deletion Prohibited
Hold: true
Shred: true
Index: false

7 The changes on system B are replicated to system A. The resulting
settings for the object on system A are:

Retention: Deletion Prohibited
Hold: true
Shred: true
Index: false

 (Continued)

Sequence Event
66 Chapter 3: Object properties

Using the Default Namespace

Replication collisions
Custom metadata is treated as a single unit. If a collision occurs when a
custom metadata change for a given object is replicated from one system
(system A) in a replication topology to another system (system B) in the
topology:

• If the last change on system A is more recent than the last change on
system B, HCP applies the change from system A to the custom
metadata on system B

• If the last change on system B is more recent than the last change on
system A, HCP does not change the custom metadata on system B

For example, suppose a given object starts out with the same custom
metadata on system A and system B. The table below shows a sequence
of events in which the custom metadata for the object is changed and the
change is then replicated.

Sequence Event

1 On system B, a client replaces the custom metadata for the object with
new custom metadata.

2 On system A, a client replaces the custom metadata for the object with
different custom metadata from the custom metadata used on system B.

3 The change on system A is replicated to system B. The resulting custom
metadata for the object on system B is the new custom metadata from
system A.
Chapter 3: Object properties 67

Using the Default Namespace

Replication collisions
68 Chapter 3: Object properties

Using the Default Namespace

4

HTTP

HTTP is one of the industry-standard protocols HCP supports for
namespace access. To access the namespace through HTTP, you can write
applications that use any standard HTTP client library, or you can use a
command-line tool, such as cURL, that supports HTTP. You can also use
HTTP to access the namespace directly from a web browser.

Using the HTTP protocol, you can store, view, retrieve, and delete objects.
You can override certain metadata when you store new objects. You can
also add, replace, and delete custom metadata, as well as change certain
system metadata for existing objects.

HCP is compliant with HTTP/1.1, as specified by RFC 2616.

For you to access the namespace through HTTP, this protocol must be
enabled in default namespace configuration. If you cannot access the
namespace in this way, see your namespace administrator.

This chapter explains how to use HTTP for namespace access. It does not
cover the HCP metadata query API, which uses the HTTP POST method to
retrieve metadata for objects that match specified query criteria. For
information on the metadata query API, see HCP Metadata Query API
Reference.

The examples in this chapter use cURL and Python with PycURL, a Python
interface that uses the libcurl library. cURL and PycURL are both freely
available open-source software. You can download them from
http://curl.haxx.se.

Note: In version 7.12.1 of PycURL, the PUT method was deprecated and
replaced with UPLOAD. The Python examples in this book show UPLOAD
but work equally well with PUT.
Chapter 4: HTTP 69

Using the Default Namespace

http://curl.haxx.se

URLs for HTTP access to a namespace
For a condensed reference of the HTTP methods you use and responses
you get when accessing a namespace, see Appendix A, “HTTP reference,”
on page 199.

URLs for HTTP access to a namespace

Depending on the method you’re using and what you want to do, the URL
you use for namespace access can identify any of:

• The namespace as a whole

• A directory

• An object

• A symbolic link

• A metadirectory

• A metafile for an object or directory

URL formats

The following sections show the URL formats you can use for default
namespace access. In these formats, you can identify the HCP system by
either DNS name or IP address. For information on the relative
advantages of DNS names and IP addresses, see “DNS name and IP
address considerations” on page 194.

If the HCP system does not support DNS, you can use the client hosts files
to enable access to the default namespace by hostname. For information
on configuring hostnames on the client system, see “Using a hosts file” on
page 193.

Notes:

• The URL formats and examples that follow show http. Your namespace
administrator can configure the namespace to require SSL security for
the HTTP protocol. In this case, you need to specify https instead of
http in your URLs.

• If you use HTTPS, check with your namespace administrator as to
whether you need to disable SSL certificate verification. For example,
with cURL you may need to use the -k or --insecure option.
70 Chapter 4: HTTP

Using the Default Namespace

URLs for HTTP access to a namespace
URL for the namespace as a whole
A URL that identifies the namespace as a whole has one of these formats:

http://default.default.hcp-domain-name

http://node-ip-address

For example:

http://default.default.hcp.example.com

URLs for objects, directories, and symbolic links
To access an object, directory, or symbolic link in the default namespace,
you use a URL that includes the fcfs_data directory. The format for this is
one of:

http://default.default.hcp-domain-name/fcfs_data[/directory-path
[/object-name]]

http://node-ip-address/fcfs_data[/directory-path[/object-name]]

Here’s a sample URL that identifies a directory:

http://default.default.hcp.example.com/fcfs_data/Corporate/Employees

Here’s a sample URL that identifies an object:

http://192.168.210.16/fcfs_data/Corporate/Employees/23_Jon_Doe

You cannot tell from a URL whether it represents an object, directory, or
symbolic link.

URLs for metafiles and metadirectories
To access a metafile or metadirectory, you use a URL that includes the
fcfs_metadata metadirectory. The format for this is one of:

http://default.default.hcp-domain-name/fcfs_metadata/
metadirectory-path[/metafile-name]

http://node-ip-address/fcfs_metadata/metadirectory-path
[/metafile-name]

Here’s a sample URL that identifies a metadirectory:

http://192.168.210.16/fcfs_metadata/Corporate/Employees/2193_John_Doe
Chapter 4: HTTP 71

Using the Default Namespace

URLs for HTTP access to a namespace
Here’s a sample URL that identifies a metafile:

http://default.default.hcp.example.com/fcfs_metadata/Corporate/Employees/
2193_John_Doe/shred.txt

URL considerations

The following considerations apply to specifying URLs in HTTP requests
against the default namespace. For considerations that apply specifically
to naming new objects, see “Object naming considerations” on page 16.

URL length
For all HTTP methods, the portion of a URL after fcfs_data or
fcfs_metadata, excluding any appended query parameters, is limited to
4,095 bytes. If an HTTP request includes a URL that violates that limit,
HCP returns a status code of 414.

URL character case
All elements of a URL except the hostname are case sensitive. This
includes the fcfs_data and fcfs_metadata elements.

Names with non-ASCII, nonprintable characters
When you store an object or directory with non-ASCII, nonprintable
characters in its name, those characters are percent encoded in the name
displayed back to you. In the core-metadata.xml file for an object, those
characters are also percent encoded, but the percent signs (%) are not
displayed.

Regardless of how the name is displayed, the object or directory is stored
with its original name, and you can access it either by its original name or
by the name with the percent-encoded characters.

Percent-encoding for special characters
Some characters have special meaning when used in a URL and may be
interpreted incorrectly when used for other purposes. To avoid ambiguity,
percent-encode the special characters listed in the table below.

Character Percent-encoded value

Space %20

Tab %09

New line %0A

Carriage return %0D

+ %2B
72 Chapter 4: HTTP

Using the Default Namespace

URLs for HTTP access to a namespace
Percent-encoded values are not case sensitive.

Quotation marks with URLs in command lines
When using a command-line tool to access the namespace through HTTP,
you work in a Unix, Mac OS® X, or Windows shell. Some characters in the
commands you enter may have special meaning to the shell. For example,
the ampersand (&) used in URLs to join multiple query parameters also
often indicates that a process should be put in the background.

To avoid the possibility of the Windows, Unix, or Mac OS X shell
misinterpreting special characters in a URL, always enclose the entire URL
in double quotation marks.

Access with a cryptographic hash value

If an object is indexed by the search facility selected for use with the
Search Console, you can use the cryptographic hash value for the object to
identify it in a URL instead of using the object name. The format for this
is:

http://default.default.hcp-domain-name/hash-algorithm/hash-value

In this format:

• hash-algorithm is the name of the cryptographic hash algorithm used to
calculate the hash value.

• hash-value is the cryptographic hash value for the object.

The hash algorithm name and the hash value are not case sensitive.

% %25

%23

? %3F

& %26

 (Continued)

Character Percent-encoded value

Note: Do not percent-encode query parameters appended to URLs. For
information on these parameters, see “Specifying metadata on object
creation” on page 114.
Chapter 4: HTTP 73

Using the Default Namespace

URLs for HTTP access to a namespace
For example:

http://default.default.hcp.example.com/SHA-256/E3B0C44298FC1C149AFBF4C899...

How to get the cryptographic hash value
To get the cryptographic hash value of an object, you can:

• Compute the hash value on the original file using a publicly available
tool such as SlavaSoft FSUM. Be sure to use the same cryptographic
hash algorithm as HCP uses.

• Look at the value in the hash.txt metafile for the object.

• Find the hash value in the X-ArcHash response header returned for the
HTTP PUT request used to store the object. For information on this
response header, see “Request-specific response headers” on page 81.

Response headers for multiple matching objects
Although unlikely, the namespace can contain multiple objects with the
same cryptographic hash value. As a result, the hash value you specify in
the URL in an HTTP request may identify more than one object. If it does,
HCP returns a status code of 300, and the response headers include:

X-DocCount: n
X-DocURI-0: /fcfs_data/object-spec-1
X-DocURI-1: /fcfs_data/object-spec-2
.
.
.
X-DocURI-n-1: /fcfs_data/object-spec-n

n is the number of objects with the specified hash value.

Note: If the Search Console is using the HDDS search facility, the ability
to access objects by their cryptographic hash values depends on how that
facility is configured.
74 Chapter 4: HTTP

Using the Default Namespace

Transmitting data in compressed format
Example
Here’s an example of response headers for multiple matching objects:

HTTP/1.1 300 Multiple Choices
X-ArcServicedBySystem: hcp.example.com
X-DocCount: 2
X-DocURI: /fcfs_data/Corporate/Employees/2193_John_Doe
X-DocURI: /fcfs_data/HR/Benefits/Plans-2012/Medical.pdf
X-RequestId: 71547E802A1CCE9E
X-ArcClusterTime: 1333828702
Content-Length: 0

Transmitting data in compressed format

To save bandwidth, you can compress object data or custom metadata in
gzip format before sending it to HCP. In the PUT request, you tell HCP that
data is compressed so that HCP knows to decompress the data before
storing it.

Similarly, in a GET request, you can tell HCP to return object data or
custom metadata in compressed format. In this case, you need to
decompress the returned data yourself.

HCP supports only the gzip algorithm for compressed data transmission.

You tell HCP that the request body is compressed by including a
Content-Encoding header with the value gzip in the HTTP PUT request. In
this case, HCP uses the gzip algorithm to decompress the received data.

You tell HCP to send a compressed response by specifying an
Accept-Encoding header in the HTTP GET request. If the header specifies
gzip, a list of compression algorithms that includes gzip, or *, HCP uses the
gzip algorithm to compress the data before sending it.

For examples of sending and receiving objects in compressed format, see
“Example 2: Sending object data in compressed format (Unix)” on page 82
and “Example 4: Retrieving object data in compressed format (command
line)” on page 98.

Note: HCP normally compresses object data and custom metadata that it
stores, so you do not need to explicitly compress objects for storage.
However, if you do need to store gzip-compressed objects or custom
metadata, do not use a Content-Encoding header. To retrieve stored
gzip-compressed data, do not use an Accept-Encoding header.
Chapter 4: HTTP 75

Using the Default Namespace

Browsing the namespace with HTTP
Browsing the namespace with HTTP

To view the namespace content in a web browser with HTTP, enter an HTTP
access namespace URL in the browser address field:

• If you enter the URL for the entire namespace, the browser lists the two
root directories, fcfs_data and fcfs_metadata.

• If you enter the URL for a directory or metadirectory, the browser lists
the contents of that directory.

• If you enter the URL for an object, the browser downloads the object
data and either opens it in the default application for the content type
or prompts to open or save it.

• If you enter the URL for a metafile, the browser downloads and displays
the contents of that metafile.

For the first two cases, HCP provides an XML stylesheet that determines
the appearance of the browser display. The sample browser window below
shows what this looks like for the images directory.

Note: Some browsers may not be able to successfully render pages
for directories that contain a very large number of objects, directories,
or symbolic links.

Tip: You can use the view-source option in the web browser to see the
XML that HCP returns.
76 Chapter 4: HTTP

Using the Default Namespace

Working with objects
Working with objects

You can use HTTP to perform these operations on objects:

• Add an object (with or without custom metadata) to the namespace

• Check whether an object exists

• Retrieve all or part of an object

• Delete an object

You can also manage the metadata and custom metadata for an object.
For more information on this, see “Working with system metadata” on
page 113 and “Working with custom metadata” on page 131.

Storing an object and, optionally, custom metadata

You use the HTTP PUT method to store an object in the namespace.
Optionally, you can use the same request to store custom metadata for the
object.

By default, when you store an object, it inherits several metadata values
from its parent directory. You can override some of this metadata when
you store the object. For more information on this, see “Specifying
metadata on object creation” on page 114.

Request contents — storing object data only
The PUT request must include these HTTP elements:

• A URL specifying the location in which to store the object

• A body containing the data to be stored in the namespace

Request contents — sending data in compressed format
You can send object data in compressed format and have HCP decompress
it before storing it. To do this, in addition to specifying the request
elements listed above:

• Use gzip to compress the content before sending it.

• Include a Content-Encoding request header with a value of gzip.

• Use a chunked transfer encoding.
Chapter 4: HTTP 77

Using the Default Namespace

Working with objects
Request contents — storing object data and custom metadata together
If you’re storing object data and custom metadata in a single operation,
the PUT request must specify these HTTP elements:

• An X-ArcSize header specifying the size, in bytes, of the object data

• A URL specifying the location in which to store the object

• A type URL query parameter with a value of whole-object

• A body containing the fixed-content data to be stored, followed by the
custom metadata, with no delimiter between them

When you store object data and custom metadata in a single operation,
the object data must always precede the custom metadata. This differs
from the behavior when you retrieve the object data together with the
custom metadata, where you can tell HCP to return the results in either
order.

You can send the body containing the object data and custom metadata in
gzip-compressed format and have HCP decompress both parts before
storing them. To do this, follow the instructions in “Request contents —
sending data in compressed format” on page 77.
78 Chapter 4: HTTP

Using the Default Namespace

Working with objects
Request-specific return codes
The table below describes the HTTP return codes that have specific
meaning for this request. For descriptions of all possible return codes, see
“HTTP return codes” on page 204.

Code Meaning Description

201 Created HCP successfully stored the object. If necessary, HCP
created new directories in the object path.

400 Bad Request One of:

• The URL in the request is not well-formed.

• The request has a Content-Encoding header that
specifies gzip, but the data is not in gzip-compressed
format.

• The request has a type=whole-object query
parameter, and either:

- The request does not have an X-ArcSize header.

- The X-ArcSize header value is greater than the
content length.

• The namespace has custom metadata XML checking
enabled, and the request includes custom metadata
that is not well-formed XML.

If the request that causes this error contains both
object data and custom metadata, HCP creates an
empty object before it returns the error. To resolve
this issue, you can either:

- Fix the custom metadata and retry the request.

- Add the object again without any custom
metadata, thereby replacing the empty object.
You can then fix the custom metadata at a later
time and add it in a separate request.

• The request contains an unsupported query
parameter or an invalid value for a query parameter.

If more information about the error is available, the
HTTP response headers include the HCP-specific
X-ArcErrorMessage header.
Chapter 4: HTTP 79

Using the Default Namespace

Working with objects
403 Forbidden One of:

• The namespace does not exist.

• The access method (HTTP or HTTPS) is disabled.

• You do not have permission to write to the target
directory.

If more information about the error is available, the
HTTP response headers include the HCP-specific
X-ArcErrorMessage header.

409 Conflict HCP could not add the object to the namespace because
the object already exists.

413 File Too Large One of:

• Not enough space is available to store the object. Try
the request again after objects are deleted from the
namespace or the system storage capacity is
increased.

• The request is trying to store an object that is larger
than two TB. HCP cannot store objects larger than
two TB.

• The request is trying to store custom metadata that is
larger than one GB. HCP cannot store custom
metadata larger than one GB.

415 Unsupported
Media Type

The request has a Content-Encoding header with a value
other than gzip.

 (Continued)

Code Meaning Description
80 Chapter 4: HTTP

Using the Default Namespace

Working with objects
Request-specific response headers
The table below describes the request-specific response headers returned
by a successful request. For information on all HCP-specific response
headers, see “HCP-specific HTTP response headers” on page 209.

Example 1: Storing an object
Here’s a sample HTTP PUT request that stores an object named wind.jpg in
the images directory.

Request with curl command line

curl -iT wind.jpg "http://default.default.hcp.example.com/fcfs_data/images/
wind.jpg"

Request in Python using PycURL

import pycurl
import os
filehandle = open("wind.jpg", 'rb')
curl = pycurl.Curl()

Header Description

X-ArcCustomMetadata
Hash

Returned only if the request contains both data and
custom metadata.

The cryptographic hash algorithm HCP uses and the
cryptographic hash value of the stored custom
metadata, in this format:

 X-ArcCustomMetadataHash: hash-algorithm
hash-value

You can use the returned hash value to verify that the
stored custom metadata is the same as the metadata
you sent. To do so, compare this value with a hash
value that you generate from the original custom
metadata.

X-ArcHash The cryptographic hash algorithm HCP uses and the
cryptographic hash value of the stored object, in this
format:

 X-ArcHash: hash-algorithm hash-value

You can use the returned hash value to verify that the
stored data is the same as the data you sent. To do so,
compare this value with a hash value that you generate
from the original data.
Chapter 4: HTTP 81

Using the Default Namespace

Working with objects
curl.setopt(pycurl.URL, "http://default.default.hcp.example.com/ \
fcfs_data/images/wind.jpg")

curl.setopt(pycurl.UPLOAD, 1)
curl.setopt(pycurl.INFILESIZE, os.path.getsize("wind.jpg"))
curl.setopt(pycurl.READFUNCTION, filehandle.read)
curl.perform()
print curl.getinfo(pycurl.RESPONSE_CODE)
curl.close()
filehandle.close()

Request headers

PUT /fcfs_data/images/wind.jpg HTTP/1.1
Host: default.default.hcp.example.com
Content-Length: 19461

Response headers

HTTP/1.1 201 Created
X-ArcServicedBySystem: hcp.example.com
Location: /fcfs_data/images/wind.jpg
X-ArcHash: SHA-256 E6803D3096172298880D60A270940EF4BB2FA2E146CC01BFB...
X-ArcClusterTime: 1333828702
Content-Length: 0

Example 2: Sending object data in compressed format (Unix)
Here’s a Unix command line that uses the gzip utility to compress the
wind.jpg file and then pipes the compressed output to a curl command.
The curl command makes an HTTP PUT request that sends the data and
tells HCP that the data is compressed.

Request with gzip and curl commands

gzip -c wind.jpg |
curl -iT - "https://default.default.hcp.example.com/fcfs_data/images/wind.jpg"
-H "Content-Encoding: gzip"

Request headers

PUT /fcfs_data/images/wind.jpg HTTP/1.1
Host: /default.default.hcp.example.com
Content-Length: 124863
Transfer-Encoding: chunked
Content-Encoding: gzip
Expect: 100-continue
82 Chapter 4: HTTP

Using the Default Namespace

Working with objects
Response headers

HTTP/1.1 100 Continue
HTTP/1.1 201 Created
X-ArcServicedBySystem: hcp.example.com
Location: /fcfs_data/images/wind.jpg
X-ArcHash: SHA-256 E830B86212A66A792A79D58BB185EE63A4FADA76BB8A1...
X-ArcClusterTime: 1333828702
Content-Length: 0

Example 3: Sending object data in compressed format (Java®)
Here’s the partial implementation of a Java class named HTTPCompression.
The implementation shows the WriteToHCP method, which stores an object
in the default namespace. The method compresses the data before
sending it and uses the Content-Encoding header to tell HCP that the data
is compressed.

The WriteToHCP method uses the GZIPCompressedInputStream helper
class. For an implementation of this class, see
“GZIPCompressedInputStream class” on page 214.

import org.apache.http.client.methods.HttpPut;
import org.apache.http.HttpResponse;
import org.apache.http.util.EntityUtils;
import com.hds.hcp.examples.GZIPCompressedInputStream;

class HTTPCompression {
 .
 .
 .
void WriteToHCP() throws Exception {

 /*
 * Set up the PUT request.
 *
 * This method assumes that the HTTP client has already been
 * initialized.
 */
HttpPut httpRequest = new HttpPut(sHCPFilePath);

 // Indicate that the content encoding is gzip.
 httpRequest.setHeader("Content-Encoding", "gzip");

 // Open an input stream to the file that will be sent to HCP.
 // This file will be processed by the GZIPCompressedInputStream to
 // produce gzip-compressed content when read by the Apache HTTP client.
 GZIPCompressedInputStream compressedInputFile
 = new GZIPCompressedInputStream(new FileInputStream(
 sBaseFileName + ".toHCP"));
Chapter 4: HTTP 83

Using the Default Namespace

Working with objects
 // Point the HttpRequest to the input stream.
 httpRequest.setEntity(new InputStreamEntity(compressedInputFile, -1));

 /*
 * Now execute the PUT request.
 */
 HttpResponse httpResponse = mHttpClient.execute(httpRequest);

 /*
 * Process the HTTP response.
 */
 // If the return code is anything but in the 200 range indicating
 // success, throw an exception.
 if (2 != (int)(httpResponse.getStatusLine().getStatusCode() / 100))
 {
 // Clean up after ourselves and release the HTTP connection to the
 // connection manager.
 EntityUtils.consume(httpResponse.getEntity());

 throw new Exception("Unexpected HTTP status code: " +
 httpResponse.getStatusLine().getStatusCode() + " (" +
 httpResponse.getStatusLine().getReasonPhrase() + ")");
 }

 // Clean up after ourselves and release the HTTP connection to the
 // connection manager.
 Entity Utils.consume(httpResponse.getEntity());
}
 .
 .
 .
}

Example 4: Storing object data with custom metadata (Unix)
Here’s a Unix command line that uses an HTTP PUT request to store the
object data and custom metadata for a file named wind.jpg. The request
stores the object in the images directory.

The cat command appends the contents of the wind-custom-metadata.xml
file to the contents of the wind.jpg file. The result is piped to a curl
command that sends the data to HCP.

Unix command line

cat wind.jpg wind-custom-metadata.xml | curl -iT -
-H "X-ArcSize: `stat -c %s wind.jpg`"
"https://default.default.hcp.example.com/fcfs_data/images/wind.jpg?
type=whole-object"
84 Chapter 4: HTTP

Using the Default Namespace

Working with objects
Request headers

PUT /fcfs_data/images/wind2.jpg HTTP/1.1
Host: /default.default.hcp.example.com
X-ArcSize: 237423
Content-Length: 238985

Response headers

HTTP/1.1 201 Created
X-ArcServicedBySystem: hcp.example.com
Location: /fcfs_data/images/wind2.jpg
X-ArcHash: SHA-256 E830B86212A66A792A79D58BB185EE63A4FADA76BB8A1...
X-ArcCustomMetadataHash: SHA-256 86212A6692A79D5B185EE63A4DA76BBC...
X-ArcTime: 1323449152
Content-Length: 0

Example 5: Storing object data with custom metadata (Java)
Here’s the partial implementation of a Java class named WholeIO. The
implementation shows the WholeWriteToHCP method, which uses a single
HTTP PUT request to store data and custom metadata for an object.

The WholeWriteToHCP method uses the WholeIOInputStream helper class.
For an implementation of this class, see “WholeIOInputStream class” on
page 220.

import org.apache.http.client.methods.HttpPut;
import org.apache.http.HttpResponse;
import org.apache.http.util.EntityUtils;
import com.hds.hcp.examples.WholeIOInputStream;

class WholeIO {
 .
 .
 .
void WholeWriteToHCP() throws Exception {

 /*
 * Set up the PUT request to store both object data and custom
 * metadata.
 *
 * This method assumes that the HTTP client has already been
 * initialized.
 */
 HttpPut httpRequest = new HttpPut(sHCPFilePath +
 "?type=whole-object");

 FileInputStream dataFile = new FileInputStream(sBaseFileName);
Chapter 4: HTTP 85

Using the Default Namespace

Working with objects
 // Put the size of the object data into the X-ArcSize header.
 httpRequest.setHeader("X-ArcSize",
 String.valueOf(dataFile.available()));

 // Point the HttpRequest to the input stream with the object data
 // followed by the custom metadata.
 httpRequest.setEntity(
 new InputStreamEntity(
 new WholeIOInputStream(
 new FileInputStream(sBaseFileName),
 new FileInputStream(sBaseFileName + ".cm")),
 -1));

 /*
 * Now execute the PUT request.
 */
 HttpResponse httpResponse = mHttpClient.execute(httpRequest);

 // If the return code is anything but in the 200 range indicating
 // success, throw an exception.
 if (2 != (int)(httpResponse.getStatusLine().getStatusCode() / 100))
 {
 // Clean up after ourselves and release the HTTP connection to the
 // connection manager.
 EntityUtils.consume(httpResponse.getEntity());

 throw new Exception("Unexpected HTTP status code: " +
 httpResponse.getStatusLine().getStatusCode() + " (" +
 httpResponse.getStatusLine().getReasonPhrase() + ")");
 }

 // Clean up after ourselves and release the HTTP connection to the
 // connection manager.
 EntityUtils.consume(httpResponse.getEntity());
}
 .
 .
 .
}

Checking the existence of an object

You use the HTTP HEAD method to check whether an object exists in the
namespace. A 200 (OK) return code indicates that the requested object
exists. A 404 (Not Found) return code indicates that the specified URL
does not identify an existing object.

Using HEAD with a symbolic link checks the existence of the object that’s
the target of the link.
86 Chapter 4: HTTP

Using the Default Namespace

Working with objects
You can also use the HEAD method to retrieve POSIX metadata for an
object without retrieving the object data. The POSIX metadata is returned
in HTTP response headers.

Request contents
The HEAD request must specify the object URL in one of these formats:

• The object path

• If the object is indexed by the search facility selected for use with the
Search Console, the cryptographic hash value for the object

For information on using a hash value to identify an object, see “Access
with a cryptographic hash value” on page 73.

Request-specific return codes
The table below describes the return codes that have specific meaning for
this request. For descriptions of all possible return codes, see “HTTP return
codes” on page 204.

Code Meaning Description

200 OK HCP found the object.

300 Multiple Choices For a request by cryptographic hash value, HCP found two
or more objects with the specified hash value.

404 Not Found HCP could not find the specified object.

For a request by a cryptographic hash value, this return
code can indicate that the object has not been indexed by
the search facility selected for use with the Search
Console.

If the HDDS search facility is selected for use with the
Search Console and the request specifies a cryptographic
hash value, this return code can indicate that the value
was found in HDDS but the object could not be retrieved
from HCP.

503 Service
Unavailable

For a request by cryptographic hash value, one of:

• The cryptographic hash algorithm specified in the
request is not the one that the namespace is using.

• HCP cannot process the hash value because no search
facility is selected for use with the Search Console.

• The request URL specifies a namespace other than the
default namespace.
Chapter 4: HTTP 87

Using the Default Namespace

Working with objects
Request-specific response headers
The table below describes request-specific response headers returned if
HCP finds the object specified by the request. For information on all
HCP-specific response headers, see “HCP-specific HTTP response headers”
on page 209.

Example: Checking the existence of an object
Here’s a sample HTTP HEAD request that checks the existence of an object
named wind.jpg in the images directory.

Request with curl command line

curl -I "http://default.default.hcp.example.com/fcfs_data/images/wind.jpg"

Request in Python using PycURL

import pycurl
import StringIO
cin = StringIO.StringIO()
curl = pycurl.Curl()
curl.setopt(pycurl.URL, "http://default.default.hcp.example.com/ \
fcfs_data/images/wind.jpg")

curl.setopt(pycurl.HEADER, 1)
curl.setopt(pycurl.NOBODY, 1)
curl.setopt(pycurl.WRITEFUNCTION, cin.write)
curl.perform()
print curl.getinfo(pycurl.RESPONSE_CODE)
print cin.getvalue()
curl.close()

Request headers

HEAD /fcfs_data/images/wind.jpg HTTP/1.1
Host: default.default.hcp.example.com

Header Description

X-ArcPermissionsUidGid The POSIX permissions (mode), owner ID, and group ID
for the object, in this format:

X-ArcPermissionsUidGid: mode=posix-mode; uid=uid;
gid=gid

X-ArcSize The size of the object, in bytes.

X-ArcTimes The POSIX ctime, mtime, and atime values for the
object, in this format:

X-ArcTimes: ctime=ctime; mtime=mtime; atime=atime
88 Chapter 4: HTTP

Using the Default Namespace

Working with objects
Response headers

HTTP/1.1 200 OK
X-ArcClusterTime: 1333828702
Content-Type: image/jpeg
Content-Length: 19461
X-ArcPermissionsUidGid: mode=0100775; uid=32; gid=86
X-ArcServicedBySystem: hcp.example.com
X-ArcTimes: ctime=1323449152; mtime=1323449152; atime=1323449152
X-ArcSize: 28463

Retrieving an object and, optionally, custom metadata

You use the HTTP GET method to retrieve an object from the namespace.
When you retrieve an object, you can:

• Tell HCP to return the data in gzip-compressed format

• Get all or part of the object data

• Use a single request to retrieve the object data and custom metadata
together

You cannot retrieve part of the object data together with the custom
metadata in a single request.

Using GET with a symbolic link returns the object that’s the target of the
link.

To request only a part of the object data, you specify the range of bytes
you want in the HTTP GET request URL. By specifying a byte range, you
can limit the amount of data returned, even when you don’t know the size
of the object.

Request contents
The GET request must specify the object URL in one of these formats:

• The object path

• If the object is indexed by the search facility selected for use with the
Search Console, the cryptographic hash value for the object

For information on using a hash value to identify an object, see “Access
with a cryptographic hash value” on page 73.
Chapter 4: HTTP 89

Using the Default Namespace

Working with objects
Request contents — requesting data in compressed format
To request that HCP return the object data in gzip-compressed format, use
an Accept-Encoding header containing the value gzip or *. The header can
specify additional compression algorithms, but HCP uses only gzip.

Request contents — choosing not to wait for delayed retrievals
HCP may detect that a GET request will take a significant amount of time to
return an object. You can choose to have the request fail in this situation
instead of waiting for HCP to return the object. To do this, in addition to
specifying the request elements listed in “Request contents” above, use
the nowait query parameter.

When a GET request fails because the request would take a significant
amount of time to return an object and the nowait parameter is specified,
HCP returns an HTTP 503 (Service Unavailable) error code.

Request contents — retrieving object data and custom metadata together
To retrieve object data and custom metadata with a single request, in
addition to the elements described above, specify these elements:

• A type URL query parameter with a value of whole-object

• Optionally, an X-ArcCustomMetadataFirst header specifying the order of
the parts, as follows:

– true — The custom metadata should precede the object data.

– false — The object data should precede the custom metadata.

The default is false.

You can also retrieve the object data and custom metadata in
gzip-compressed format by specifying an Accept-Encoding header
containing the value gzip or *. The header can specify additional
compression algorithms, but HCP uses only gzip.

Tip: If the request specifies nowait and HCP returns an HTTP 503 error
code, retry the request a few times, waiting about thirty seconds in
between retries.
90 Chapter 4: HTTP

Using the Default Namespace

Working with objects
Request contents — requesting a partial object
To retrieve only part of the object data, in addition to the elements
described in “Request contents” and, optionally, “Request contents —
requesting data in compressed format”, specify an HTTP Range request
header with the range of bytes to retrieve. Bytes are counted in the object
data only. The first byte of the data is in position 0 (zero), so a range of
1-5 specifies the second through sixth bytes of the object, not the first
through fifth.

The Range header has this format:

Range: bytes=range

These rules apply to the Range header:

• If you omit the Range header, HCP returns the complete object data.

• If you specify a valid range, HCP returns the requested amount of data
with a status code of 206.

• If you specify an invalid range, HCP ignores it and returns the complete
object data with a status code of 416.

• You cannot request partial object data and custom metadata in the
same request. If the request includes a Range header and a
type=whole-object query parameter, the request fails, and HCP returns
a status code of 400.

The table below shows the ways in which you can specify a byte range.

Range Specification Description Example

start-position–end-position Bytes in start-position
through end-position,
inclusive. If end-position is
greater than the size of the
data, HCP returns the
bytes from start-position
through the end of the
data.

Five hundred bytes
beginning with the
two-hundred-first:
200-699

start-position– Bytes in start-position
through the end of the
object data.

All the bytes beginning
with the seventy-sixth
and continuing through
the end of the object: 75-
Chapter 4: HTTP 91

Using the Default Namespace

Working with objects
Request-specific return codes
The table below describes the return codes that have specific meaning for
this request. For descriptions of all possible return codes, see “HTTP return
codes” on page 204.

–offset-from-end Bytes in the
offset-from-end position,
counted back from the last
position in the object data,
through the end of the
object data.

The last 25 bytes of the
object: -25

Code Meaning Description

200 OK HCP successfully retrieved the object.

This code is also returned if the URL specified a valid
directory path and HCP returned a directory listing.

206 Partial content HCP successfully retrieved the data in the byte range
specified in the request.

300 Multiple Choice For a request by cryptographic hash value, HCP found two
or more objects with the specified hash value.

400 Bad Request The request was not valid. These are some, but not all, of
the possible reasons:

• The request has both a type=whole-object query
parameter and a Range request header.

• The URL in the request is not well-formed.

• The request contains an unsupported query
parameter or an invalid value for a query parameter.

If more information about the error is available, the
HTTP response headers include the HCP-specific
X-ArcErrorMessage header.

 (Continued)

Range Specification Description Example
92 Chapter 4: HTTP

Using the Default Namespace

Working with objects
404 Not Found HCP could not find the specified object.

For a request by cryptographic hash value, this return
code can indicate that the object has not been indexed by
the search facility selected for use with the Search
Console.

If the HDDS search facility is selected for use with the
Search Console and the request specifies a cryptographic
hash value, this return code can indicate that the value
was found in HDDS but the object could not be retrieved
from HCP.

406 Not Acceptable The request has an Accept-Encoding header that does not
include gzip or specify *.

416 Requested range
not satisfiable

One of:

• The specified start position is greater than the size of
the requested data.

• The size of the specified range is 0 (zero).

503 Service
Unavailable

One of:

• For a request by cryptographic hash value, the
cryptographic hash algorithm specified in the request
is not the one the namespace is using.

• For a request by cryptographic hash value, HCP
cannot process the hash value because no search
facility is selected for use with the Search Console.

• For a request by cryptographic hash value, the
request URL specifies a namespace other than the
default namespace.

• The request specifies the nowait query parameter,
and HCP determined that the request would have
taken a significant amount of time to return the
object.

 (Continued)

Code Meaning Description
Chapter 4: HTTP 93

Using the Default Namespace

Working with objects
Request-specific response headers
The table below describes request-specific response headers returned by a
successful request. For information on all HCP-specific response headers,
see “HCP-specific HTTP response headers” on page 209.

Header Description

Content-Encoding Returned only if HCP compressed the response before
returning it.

Always gzip.

Content-Length The length, in bytes, of the returned data. This header
has these characteristics:

• If you requested that the response be compressed,
this is the compressed size of the returned data.

• If you requested uncompressed object data without
custom metadata, the value of this header is the
same as the value of the X-ArcSize header.

• If you requested uncompressed partial content, the
value is the size of the returned part. This value is
equal to the difference between the start-position
and end-position values in the Content-Range
header plus one byte.

• If you requested uncompressed object data and
custom metadata, the value is the sum of the size of
the object data (the X-ArcSize header) and the size
of the custom metadata.

If the returned data is large, HCP may send a chunked
response, which does not include this header.

Content-Range Returned only when getting partial content.

The byte range of the returned object data, in this
format:

start-position–end-position /object-size

object-size is the total size of the object data and is the
same as the value of the X-ArcSize header.
94 Chapter 4: HTTP

Using the Default Namespace

Working with objects
Content-Type The type of content:

• If you requested all or part of the object data only,
this is the Internet media type of the object data,
such as text/plain or image/jpg.

• If you requested the object data and custom
metadata together, this value is always
application/octet-stream.

X-ArcContentLength Returned only if HCP compressed the response before
returning it.

The uncompressed length of the returned data. If the
returned data includes both the object data and custom
metadata, this is the length of both together.

X-ArcCustomMetadata
ContentType

Returned only if the request asked for the object data
and custom metadata.

Always text/xml.

X-ArcCustomMetadata
First

Returned only if the request asked for the object data
and custom metadata.

One of:

• true — The custom metadata precedes the object
data.

• false — The object data precedes the custom
metadata.

X-ArcDataContentType Returned only if the request asked for the object data
and custom metadata.

The Internet media type of the object, such as text/plain
or image/jpg.

X-ArcPermissionsUidGid The POSIX permissions (mode), owner ID, and group ID
for the object, in this format:

X-ArcPermissionsUidGid: mode=posix-mode; uid=uid;
 gid=gid

X-ArcSize The size of the object, in bytes.

X-ArcTimes The POSIX ctime, mtime, and atime values for the
object, in this format:

X-ArcTimes: ctime=ctime; mtime=mtime; atime=atime

 (Continued)

Header Description
Chapter 4: HTTP 95

Using the Default Namespace

Working with objects
Response body
The body of the HTTP response contains the requested object data or
object data and custom metadata.

Example 1: Retrieving an object by name
Here’s a sample HTTP GET request that retrieves the object named
wind.jpg and stores it using the same name on the client system.

Request with curl command line

curl "http://default.default.hcp.example.com/fcfs_data/images/wind.jpg" >
wind.jpg

Request in Python using PycURL

import pycurl
filehandle = open("wind2.jpg", 'wb')
curl = pycurl.Curl()
curl.setopt(pycurl.URL, "http://default.default.hcp.example.com/ \
fcfs_data/images/wind.jpg")

curl.setopt(pycurl.WRITEFUNCTION, filehandle.write)
curl.perform()
print curl.getinfo(pycurl.RESPONSE_CODE)
curl.close()
filehandle.close()

Request headers

GET /fcfs_data/images/wind.jpg HTTP/1.1
Host: default.default.hcp.example.com

Response headers

HTTP/1.1 200 OK
X-ArcClusterTime: 1333828702
Content-Length: 19461
Content-Type: image/jpeg
X-ArcPermissionsUidGid: mode=0100775; uid=10; gid=43
X-ArcServicedBySystem: hcp.example.com
X-ArcTimes: ctime=1323449152; mtime=1323449152; atime=1323449152
X-ArcSize: 19461

Tip: If a GET request unexpectedly returns a zero-length file, use the -i
parameter with curl to return the response headers in the target file.
These headers may provide helpful information for diagnosing the
problem.
96 Chapter 4: HTTP

Using the Default Namespace

Working with objects
Example 2: Retrieving an object by its cryptographic hash value
Here’s a sample HTTP GET request that retrieves an object by its
cryptographic hash value (an option available only when a search facility is
selected for use with the Search Console) and stores it as earth.jpg on the
client system.

Request with curl command line

curl "http://default.default.hcp.example.com/SHA-256/E3B0C44298FC1C149AF..." >
earth.jpg

Request in Python using PycURL

import pycurl
filehandle = open("earth2.jpg", 'wb')
curl = pycurl.Curl()
curl.setopt(pycurl.URL, "http://default.default.hcp.example.com/ \
SHA-256/E3B0C44298FC1C149AFBF4C8...")

curl.setopt(pycurl.WRITEFUNCTION, filehandle.write)
curl.perform()
print curl.getinfo(pycurl.RESPONSE_CODE)
curl.close()
filehandle.close()

Request headers

GET /SHA-256/E3B0C44298FC1C149AFBF4C8E6803D3096172298880D60... HTTP/1.1
Host: default.default.hcp.example.com

Response headers

HTTP/1.1 200 OK
X-ArcClusterTime: 1333828702
Content-Length: 20327
Content-Type: image/jpeg
X-ArcPermissionsUidGid: mode=0100764; uid=10; gid=43
X-ArcServicedBySystem: hcp.example.com
X-ArcTimes: ctime=1323449152; mtime=1323449152; atime=1323449152
X-ArcSize: 20327

Example 3: Retrieving part of an object
Here’s a sample HTTP GET request that retrieves the first 500 bytes of an
object named Recruiters.txt and stores the returned data as
RecruitersTop.txt on the client system.

Request with curl command line

curl -i -r 0-499 "http://default.default.hcp.example.com/fcfs_data/HR/
Recruiters.txt" > RecruitersTop.txt
Chapter 4: HTTP 97

Using the Default Namespace

Working with objects
Request in Python using PycURL

import pycurl
filehandle = open("RecruitersTop.txt", 'wb')
curl = pycurl.Curl()
curl.setopt(pycurl.URL, "http://default.default.hcp.example.com/ \
fcfs_data/HR/Recruiters.txt")

curl.setopt(pycurl.WRITEFUNCTION, filehandle.write)
curl.setopt(pycurl.RANGE, "0-499")
curl.perform()
print curl.getinfo(pycurl.RESPONSE_CODE)
curl.close()
filehandle.close()

Request headers

GET /fcfs_data/HR/Recruiters.txt HTTP/1.1
Range: bytes=0-499
Host: default.default.hcp.example.com

Response headers

HTTP/1.1 206 Partial Content
X-ArcClusterTime: 1333828702
Content-Type: text/plain
Content-Range: bytes 0-499/238985
Content-Length: 500
X-ArcPermissionsUidGid: mode=0100740; uid=45; gid=76
X-ArcServicedBySystem: hcp.example.com
X-ArcTimes: ctime=1323449152; mtime=1323449152; atime=1323449152
X-ArcSize: 238985

Example 4: Retrieving object data in compressed format (command line)
Here’s a sample curl command that tells HCP to compress the wind.jpg
object before sending it to the client and then decompresses the returned
content.

Request with curl command line

curl --compressed
"http://default.default.hcp.example.com/fcfs_data/images/wind.jpg" > wind.jpg

Request in Python using PycURL

import pycurl
filehandle = open("wind.jpg", 'wb')
curl = pycurl.Curl()
curl.setopt(pycurl.URL, "https://default.default.hcp.example.com \
/fcfs_data/images/wind.jpg")
98 Chapter 4: HTTP

Using the Default Namespace

Working with objects
curl.setopt(pycurl.ENCODING, 'gzip')
curl.setopt(pycurl.WRITEFUNCTION, filehandle.write)
curl.perform()
print curl.getinfo(pycurl.RESPONSE_CODE)
curl.close()
filehandle.close()

Request headers

GET /fcfs_data/images/wind.jpg HTTP/1.1
Host: default.default.hcp.example.com
Accept-Encoding: deflate, gzip

Response headers

HTTP/1.1 200 OK
X-ArcClusterTime: 1333828702
Content-Encoding: gzip
Content-Length: 93452
Content-Type: image/jpeg
X-ArcContent-Length: 129461
X-ArcPermissionsUidGid: mode=0100775; uid=10; gid=43
X-ArcServicedBySystem: hcp.example.com
X-ArcTimes: ctime=1323449152; mtime=1323449152; atime=1323449152
X-ArcSize: 129461

Response body

The contents of the wind.jpg object in gzip-compressed format.

Example 5: Retrieving object data in compressed format (Java)
Here’s the partial implementation of a Java class named HTTPCompression.
The implementation shows the ReadFromHCP method, which retrieves an
object from the default namespace. It uses the Accept-Encoding header to
tell HCP to compress the object before returning it and then decompresses
the results.

import org.apache.http.client.methods.HttpGet;
import org.apache.http.HttpResponse;
import org.apache.http.util.EntityUtils;
import java.util.zip.GZIPInputStream;

class HTTPCompression {
 .
 .
 .
void ReadFromHCP() throws Exception {

 /*
 * Set up the GET request.
 *
Chapter 4: HTTP 99

Using the Default Namespace

Working with objects
 * This method assumes that the HTTP client has already been
 * initialized.
 */
 HttpGet httpRequest = new HttpGet(sHCPFilePath);

 // Indicate that you want HCP to compress the returned data with gzip.
 httpRequest.setHeader("Accept-Encoding", "gzip");

 /*
 * Now execute the GET request.
 */
 HttpResponse httpResponse = mHttpClient.execute(httpRequest);

 /*
 * Process the HTTP response.
 */

 // If the return code is anything but in the 200 range indicating
 // success, throw an exception.
 if (2 != (int)(httpResponse.getStatusLine().getStatusCode() / 100))
 {
 // Clean up after ourselves and release the HTTP connection to the
 // connection manager.
 EntityUtils.consume(httpResponse.getEntity());

 throw new Exception("Unexpected HTTP status code: " +
 httpResponse.getStatusLine().getStatusCode() + " (" +
 httpResponse.getStatusLine().getReasonPhrase() + ")");
 }

 /*
 * Write the decompressed file to disk.
 */
 FileOutputStream outputFile = new FileOutputStream(
 sBaseFileName + ".fromHCP");

 // Build the string that contains the response body for return to the
 // caller.
 GZIPInputStream bodyISR = new
 GZIPInputStream(httpResponse.getEntity().getContent());
 byte partialRead[] = new byte[1024];
 int readSize = 0;
 while (-1 != (readSize = bodyISR.read(partialRead))) {
 outputFile.write(partialRead, 0, readSize);
 }

 // Clean up after ourselves and release the HTTP connection to the
 // connection manager.
 EntityUtils.consume(httpResponse.getEntity());
}
 .
 .
 .
}

100 Chapter 4: HTTP

Using the Default Namespace

Working with objects
Example 6: Retrieving object data and custom metadata together (Java)
Here’s the partial implementation of a Java class named WholeIO. The
implementation shows the WholeReadFromHCP method, which retrieves
object data and custom metadata in a single data stream, splits the object
data from the custom metadata, and stores each in a separate file.

The WholeReadFromHCP method uses the WholeIOOutputStream helper
class. For an implementation of this class, see “WholeIOOutputStream
class” on page 221.

import org.apache.http.client.methods.HttpGet;
import org.apache.http.HttpResponse;
import org.apache.http.util.EntityUtils;
import com.hds.hcp.examples.WholeIOOutputStream;

class WholeIO {
 .
 .
 .
void WholeReadFromHCP() throws Exception {

 /*
 * Set up the GET request, specifying whole-object I/O.
 *
 * This method assumes that the HTTP client has already been
 * initialized.
 */
 HttpGet httpRequest = new HttpGet(sHCPFilePath +
 "?type=whole-object");

 // Request the custom metadata before the object data.
 // This can be useful if the application examines the custom metadata
 // to set the context for the data that will follow.
 httpRequest.setHeader("X-ArcCustomMetadataFirst", "true");

 /*
 * Now execute the GET request.
 */
 HttpResponse httpResponse = mHttpClient.execute(httpRequest);

 // If the return code is anything but in the 200 range indicating
 // success, throw an exception.
 if (2 != (int)(httpResponse.getStatusLine().getStatusCode() / 100))
 {
 // Clean up after ourselves and release the HTTP connection to the
 // connection manager.
 EntityUtils.consume(httpResponse.getEntity());

 throw new Exception("Unexpected HTTP status code: " +
 httpResponse.getStatusLine().getStatusCode() + " (" +
 httpResponse.getStatusLine().getReasonPhrase() + ")");
 }
Chapter 4: HTTP 101

Using the Default Namespace

Working with objects
 /*
 * Determine whether the object data or custom metadata is first.
 */
 Boolean cmFirst = new Boolean(
 httpResponse.getFirstHeader("X-ArcCustomMetadataFirst").getValue());

 /*
 * Determine the size of the first part based on whether the object
 * data or custom metadata is first.
 */

 // Assume object data is first.
 int firstPartSize = Integer.valueOf(
 httpResponse.getFirstHeader("X-ArcSize").getValue());

 // If custom metadata is first, do the math.
 if (cmFirst) {
 // Subtract the data size from the content length returned.
 firstPartSize = Integer.valueOf(
 httpResponse.getFirstHeader("Content-Length").getValue())
 - firstPartSize;
 }

 /*
 * Split and write the files to disk.
 */
 WholeIOOutputStream outputCreator= new WholeIOOutputStream(
 new FileOutputStream(sBaseFileName + ".fromHCP"),
 new FileOutputStream(sBaseFileName + ".fromHCP.cm"),
 cmFirst);

 outputCreator.copy(httpResponse.getEntity().getContent(),
 firstPartSize);

 outputCreator.close(); // Files should be created.

 // Clean up after ourselves and release the HTTP connection to the
 // connection manager.
 EntityUtils.consume(httpResponse.getEntity());
}
 .
 .
 .
}

Deleting an object

You use the HTTP DELETE method to delete an object from the namespace.

Note: Using the DELETE method with a symbolic link deletes the link, not
the target object.
102 Chapter 4: HTTP

Using the Default Namespace

Working with objects
Request contents
The DELETE request must specify the object URL in one of these formats:

• The object path

• If the object is indexed by the search facility selected for use with the
Search Console, the cryptographic hash value for the object

For information on using a hash value to identify an object, see “Access
with a cryptographic hash value” on page 73.

Request-specific return codes
The table below describes the return codes that have specific meaning for
this request. For descriptions of all possible return codes, see “HTTP return
codes” on page 204.

Code Meaning Description

200 OK HCP successfully deleted the object.

300 Multiple Choice For a request by cryptographic hash value, HCP found two
or more objects with the specified hash value.

403 Forbidden One of:

• The namespace does not exist.

• The access method (HTTP or HTTPS) is disabled.

• The object is under retention.

• You do not have permission to perform the requested
operation.

If more information about the error is available, the
HTTP response headers include the HCP-specific
X-ArcErrorMessage header.

404 Not Found HCP could not find the specified object.

For a request by cryptographic hash value, this return
code can indicate that the object has not been indexed by
the search facility selected for use with the Search
Console.

If the HDDS search facility is selected for use with the
Search Console and the request specifies a cryptographic
hash value, this return code can indicate that the value
was found in HDDS but the object could not be retrieved
from HCP.
Chapter 4: HTTP 103

Using the Default Namespace

Working with objects
Request-specific response headers
This request does not have any request-specific response headers. For
information on all HCP-specific response headers, see “HCP-specific HTTP
response headers” on page 209.

Example: Deleting an object
Here’s a sample HTTP DELETE request that deletes the object named
wind.jpg from the images directory in the default namespace.

Request with curl command line

curl -iX DELETE "http://default.default.hcp.example.com/fcfs_data/images/
wind.jpg"

Request in Python using PycURL

import pycurl
curl = pycurl.Curl()
curl.setopt(pycurl.URL, "http://default.default.hcp.example.com/ \
fcfs_data/images/wind.jpg")

curl.setopt(pycurl.CUSTOMREQUEST, "DELETE")
curl.perform()
print curl.getinfo(pycurl.RESPONSE_CODE)
curl.close()

Request headers

DELETE /fcfs_data/images/wind.jpg HTTP/1.1
Host: default.default.hcp.example.com

409 Conflict HCP could not delete the specified object because the
object is currently being written to the namespace.

503 Service
Unavailable

For a request by cryptographic hash value, one of:

• The cryptographic hash algorithm specified in the
request is not the one the namespace is using.

• HCP cannot process the hash value because no search
facility is selected for use with the Search Console.

• The request URL specifies a namespace other than the
default namespace.

 (Continued)

Code Meaning Description
104 Chapter 4: HTTP

Using the Default Namespace

Working with directories
Response headers

HTTP/1.1 200 OK
X-ArcServicedBySystem: hcp.example.com
X-ArcClusterTime: 1333828702
Content-Length: 0

Working with directories

You can perform these operations on directories

• Create an empty directory

• Check the existence of a directory

• List directory contents

• Delete an empty directory

You can also manage the metadata for a directory. For more information
on this, see “Working with system metadata” on page 113.

Creating an empty directory

You use the HCP-specific HTTP MKDIR method to create empty directories
in the namespace. If any other directories in the path you specify do not
already exist, HCP creates them as well.

Request contents
The MKDIR request must specify a URL with the path of the new directory.

You can use URL query parameters to override the default POSIX metadata
for the directory. For a description of these parameters, see “Specifying
metadata on directory creation” on page 119.

Request-specific return codes
The table below describes the return codes that have specific meaning for
this request. For descriptions of all possible return codes, see “HTTP return
codes” on page 204.

Code Meaning Description

201 Created HCP successfully created the directory.

409 Conflict HCP could not create the directory in the namespace
because the directory already exists.
Chapter 4: HTTP 105

Using the Default Namespace

Working with directories
Request-specific response headers
The directory creation operation does not have any request-specific
response headers. For information on all HCP-specific response headers,
see “HCP-specific HTTP response headers” on page 209.

Example: Adding a directory
Here’s a sample HTTP MKDIR request that creates a directory named
images under fcfs_data.

Request with curl command line

curl -iX MKDIR "http://default.default.hcp.example.com/fcfs_data/images"

Request in Python using PycURL

import pycurl
curl = pycurl.Curl()
curl.setopt(pycurl.URL, "http://default.default.hcp.example.com/ \
fcfs_data/images")

curl.setopt(pycurl.CUSTOMREQUEST, "MKDIR")
curl.perform()
print curl.getinfo(pycurl.RESPONSE_CODE)
curl.close()

Request headers

MKDIR /fcfs_data/images HTTP/1.1
Host: default.default.hcp.example.com

Response headers

HTTP/1.1 201 Created
X-ArcServicedBySystem: hcp.example.com
Location: /fcfs_data/images
Content-Length: 0

Checking the existence of a directory

You use the HTTP HEAD method to check whether a directory exists in the
namespace.

Request contents
The HEAD request must specify the URL of the directory.
106 Chapter 4: HTTP

Using the Default Namespace

Working with directories
Request-specific return codes
The table below describes the return codes that have specific meaning for
this request. For descriptions of all possible return codes, see “HTTP return
codes” on page 204.

Request-specific response headers
The table below describes the request-specific response headers. For
information on all HCP-specific response headers, see “HCP-specific HTTP
response headers” on page 209.

Example: Checking the existence of a directory
Here’s a sample HTTP HEAD request that checks the existence of the images
directory.

Request with curl command line

curl -iI "http://default.default.hcp.example.com/fcfs_data/images"

Request in Python using PycURL

import pycurl
import StringIO
cin = StringIO.StringIO()
curl = pycurl.Curl()
curl.setopt(pycurl.URL, "http://default.default.hcp.example.com/ \
fcfs_data/images")

curl.setopt(pycurl.HEADER, 1)
curl.setopt(pycurl.NOBODY, 1)
curl.setopt(pycurl.WRITEFUNCTION, cin.write)

Code Meaning Description

200 OK HCP found the directory.

404 Not Found HCP could not find the specified directory.

Header Description

X-ArcPermissionsUidGid The POSIX permissions (mode), owner ID, and group ID
for the directory, in this format:

X-ArcPermissionsUidGid: mode=posix-mode; uid=uid;
gid=gid

X-ArcSize For directories, always -1.

X-ArcTimes The POSIX ctime, mtime, and atime values for the
directory, in this format:

X-ArcTimes: ctime=ctime; mtime=mtime; atime=atime
Chapter 4: HTTP 107

Using the Default Namespace

Working with directories
curl.perform()
print curl.getinfo(pycurl.RESPONSE_CODE)
print cin.getvalue()
curl.close()

Request headers

HEAD /fcfs_data/images HTTP/1.1
Host: default.default.hcp.example.com

Response headers

HTTP/1.1 200 OK
X-ArcClusterTime: 1333828702
Content-Type: text/xml
X-ArcPermissionsUidGid: mode=040700; uid=0; gid=0
X-ArcServicedBySystem: hcp.example.com
X-ArcTimes: ctime=1323449152; mtime=1323449152; atime=1323449152
X-ArcSize: -1
Content-Length: 0

Listing directory contents

You use the HTTP GET method to list the contents of a directory in the
namespace.

Request contents
The GET request must specify the URL of the directory.

Request-specific return codes
The table below describes the return codes that have specific meaning for
this request. For descriptions of all possible return codes, see “HTTP return
codes” on page 204.

Code Meaning Description

200 OK HCP successfully retrieved the directory listing.

404 Not Found HCP could not find the specified directory.
108 Chapter 4: HTTP

Using the Default Namespace

Working with directories
Request-specific response headers
The table below describes the request-specific response headers. For
information on all HCP-specific response headers, see “HCP-specific HTTP
response headers” on page 209.

Response body
The body of the HTTP response consists of XML that lists the contents of
the requested directory. It lists only the immediate directory contents, not
the contents of any subdirectories.

The XML for the list has this format:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="/static/directory.xsl"?>
<directory xsi:noNamespaceSchemaLocation="/static/directory.xsd"

path="directory-path"
parentDir="parent-directory-path"
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance">

<!--Entry format -->
<entry name="object-directory-or-symbolic-link-name"

utf8Name="object-directory-or-symbolic-link-name"
fileType="directory|file|symlink"
mode="posix-access-mode-as-decimal-number"
modeString="posix-access-mode-as-mask"
uid="posix-uid"
gid="posix-gid"
size="bytes"
accessTime="seconds-since-1/1/1970"
accessTimeString="datetime-value"
modTime="seconds-since-1/1/1970"
modTimeString="datetime-value"

Header Description

X-ArcObjectType For directories, always directory.

X-ArcPermissionsUidGid The POSIX permissions (mode), owner ID, and group ID
for the directory, in this format:

X-ArcPermissionsUidGid: mode=posix-mode; uid=uid;
gid=gid

X-ArcSize For directories, always -1.

X-ArcTimes The POSIX ctime, mtime, and atime values for the
directory, in this format:

X-ArcTimes: ctime=ctime; mtime=mtime; atime=atime
Chapter 4: HTTP 109

Using the Default Namespace

Working with directories
/>

</directory>

Example: Listing directory contents
Here’s a sample HTTP GET request that retrieves the contents of the images
directory and saves the results in the imagesdir.xml file.

Request with curl command line

curl -i "http://default.default.hcp.example.com/fcfs_data/images" > imagesdir.xml

Request in Python using PycURL

import pycurl
filehandle = open("imagesdir.xml", 'wb')
curl = pycurl.Curl()
curl.setopt(pycurl.URL, "http://default.default.hcp.example.com/ \
fcfs_data/images")

curl.setopt(pycurl.WRITEFUNCTION, filehandle.write)
curl.perform()
print curl.getinfo(pycurl.RESPONSE_CODE)
curl.close()
filehandle.close()

Request headers

GET /fcfs_data/images HTTP/1.1
Host: default.default.hcp.example.com

Response headers

HTTP/1.1 200 OK
X-ArcClusterTime: 1324554500
Content-Type: text/xml
X-ArcPermissionsUidGid: mode=040777; uid=0; gid=0
X-ArcServicedBySystem: hcp.example.com
X-ArcTimes: ctime=1324553000; mtime=1324553000; atime=1324553000
X-ArcSize: -1
Content-Length: 1473

Notes:

• For directories, the value of the size attribute is always 1.

• For symbolic links, the value of the size attribute is always 0.

• The entry for the requested directory has a name value of . (period).
110 Chapter 4: HTTP

Using the Default Namespace

Working with directories
Response body

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="/static/directory.xsl"?>
<directory xsi:noNamespaceSchemaLocation="/static/directory.xsd"

path="/fcfs_data/images"
parentDir="/fcfs_data"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<entry name="."
utf8Name="."
fileType="directory"
mode="16895"
modeString="drwxrwxrwx"
uid="0"
gid="0"
size="1"
accessTime="1321269812"
accessTimeString="Mon Nov 14 11:23:32 EST 2011"
modTime="1321269812"
modTimeString="Mon Nov 14 11:23:32 EST 2011"/>

<entry name="wind.jpg"
utf8Name="wind.jpg"
fileType="file"
mode="33268"
modeString="-rwxrw-r--"
uid="10"
gid="43"
size="19461"
accessTime="1323773156"
accessTimeString="Tue Dec 13 10:45:56 EST 2011"
modTime="1323773156"
modTimeString="Tue Dec 13 10:45:56 EST 2011"/>

<entry name="fire.jpg"
utf8Name="fire.jpg"
fileType="file"
mode="33268"
modeString="-rwxrw-r--"
uid="10"
gid="43"
size="19206"
accessTime="1321350662"
accessTimeString="Tue Nov 15 9:51:02 EDT 2011"
modTime="1321350662"
modTimeString="Tue Nov 15 9:51:02 EDT 2011"/>

<entry name="earth.jpg"
utf8Name="earth.jpg"
fileType="file"
mode="33268"
modeString="-rwxrw-r--"
Chapter 4: HTTP 111

Using the Default Namespace

Working with directories
uid="10"
gid="43"
size="20327"
accessTime="1321366428"
accessTimeString="Tue Nov 15 14:13:48 EDT 2011"
modTime="1321366428"
modTimeString="Tue Nov 15 14:13:48 EDT 2011"/>

</directory>

Deleting a directory

You use the HTTP DELETE method to delete an empty directory from the
namespace. You cannot delete a directory that contains any objects,
subdirectories, or symbolic links.

Request contents
The DELETE request must specify the URL of the directory.

Request-specific return codes
The table below describes the HTTP return codes that have specific
meanings for this request. For descriptions of all possible return codes,
see “HTTP return codes” on page 204.

Request-specific response headers
This request does not have any request-specific response headers. For
information on all HCP-specific response headers, see “HCP-specific HTTP
response headers” on page 209.

Code Meaning Description

200 OK HCP successfully deleted the directory.

403 Forbidden One of:

• The namespace does not exist.

• The access method (HTTP or HTTPS) is disabled.

• The directory is not empty.

• You do not have permission to delete the directory.

If more information about the error is available, the
HTTP response headers include the HCP-specific
X-ArcErrorMessage header.

404 Not Found HCP could not find the specified directory.

409 Conflict HCP could not delete the specified directory because the
directory is currently being written to the namespace.
112 Chapter 4: HTTP

Using the Default Namespace

Working with system metadata
Example: Deleting a directory
Here’s a sample HTTP DELETE request that deletes the directory named
obsolete from the images directory in the default namespace.

Request with curl command line

curl -iX DELETE "http://default.default.hcp.example.com/fcfs_data/images/
obsolete"

Request in Python using PycURL

import pycurl
curl = pycurl.Curl()
curl.setopt(pycurl.URL, "http://default.default.hcp.example.com/ \
fcfs_data/images/obsolete")

curl.setopt(pycurl.CUSTOMREQUEST, "DELETE")
curl.perform()
print curl.getinfo(pycurl.RESPONSE_CODE)
curl.close()

Request headers

DELETE /fcfs_data/images/obsolete HTTP/1.1
Host: default.default.hcp.example.com

Response headers

HTTP/1.1 200 OK
X-ArcServicedBySystem: hcp.example.com
X-ArcClusterTime: 1333828702
Content-Length: 0

Working with system metadata

You can perform these operations on the system metadata associated with
objects and directories:

• Specify metadata when creating an object

• Specify POSIX metadata when creating a directory

• Retrieve the HCP-specific metadata for objects and directories

• Retrieve the POSIX metadata for objects and directories

• Change HCP-specific metadata for an existing object or directory
Chapter 4: HTTP 113

Using the Default Namespace

Working with system metadata
• Change the POSIX metadata for an existing object or directory

Specifying metadata on object creation

When you store an object in the namespace, you can override the defaults
for some of its metadata. If the PUT request to store the object creates
any new directories, the metadata you specify also overrides the defaults
for those directories.

You can use query parameters to override the default values for these
object properties:

• POSIX owner ID and group ID

• POSIX permissions

• POSIX atime and mtime

• Retention setting

• Shred setting

• Index setting

For more information on object metadata, see Chapter 3, “Object
properties,” on page 33.

Request contents
The PUT request must include these HTTP elements:

• A URL specifying the location in which to store the object.

• A body containing the data to be stored.

• One or more query parameters to set the metadata values. These
parameters are case sensitive.

Note: For detailed information on metadata values, see Chapter 3,
“Object properties,” on page 33.
114 Chapter 4: HTTP

Using the Default Namespace

Working with system metadata
The table below describes the query parameters you can use to override
object metadata defaults.

Parameter Description

uid The user ID of the object owner. Valid values are integers
greater than or equal to zero.

gid The ID of the owning group for the object. Valid values are
integers greater than or equal to zero.

file_permissions The POSIX permissions for the object, specified as a
three-digit octal value. For more information on permission
values, see “Octal permission values” on page 38.

directory_permissions The POSIX permissions for any new directories in the object
path, specified as a three-digit octal value.

atime The POSIX atime value for the object, specified as seconds
since January 1, 1970, at 00:00:00 UTC.

mtime The POSIX mtime value for the object, specified as seconds
since January 1, 1970, at 00:00:00 UTC.

retention The retention setting for the object, as described in
“Changing retention settings” on page 45. You cannot
specify Hold or Unhold as the value for a metadata override.

shred The shred setting for the object, specified as a numeric
value (0 or 1), as described in “Shred setting” on page 57.

index The index setting for the object, specified as a numeric
value (0 or 1), as described in “Index setting” on page 58.
Chapter 4: HTTP 115

Using the Default Namespace

Working with system metadata
Request-specific return codes
The table below describes the return codes that have specific meaning for
This request. For descriptions of all possible return codes, see “HTTP
return codes” on page 204.

Code Meaning Description

201 Created HCP successfully stored the object.

400 Bad Request One of:

• The URL in the request is not well-formed.

• The request has a Content-Encoding header that
specifies gzip, but the data is not in gzip-compressed
format.

• The request contains an unsupported query
parameter or an invalid value for a query parameter.

If more information about the error is available, the
HTTP response headers include the HCP-specific
X-ArcErrorMessage header.

403 Forbidden One of:

• The namespace does not exist.

• The access method (HTTP or HTTPS) is disabled.

• The namespace is configured not to allow owner,
group, and permission overrides on object creation.

• You do not have permission to write to the target
directory.

If more information about the error is available, the
HTTP response headers include the HCP-specific
X-ArcErrorMessage header.

409 Conflict HCP could not store the object in the namespace because
the object already exists.

413 File Too Large One of:

• Not enough space is available to store the object. Try
the request again after objects are deleted from the
namespace or the system storage capacity is
increased.

• The request is trying to store an object that is larger
than two TB. HCP cannot store objects larger than
two TB.
116 Chapter 4: HTTP

Using the Default Namespace

Working with system metadata
Request-specific response header
The table below describes the request-specific response header returned
by a successful request. For information on all HCP-specific response
headers, see “HCP-specific HTTP response headers” on page 209.

For more information on metadata values, see Chapter 3, “Object
properties,” on page 33.

Example 1: Overriding owner, group, and permissions
Here’s a sample HTTP PUT request that stores an object named wind.jpg in
the default namespace, overriding the default owner, group, and
permissions for the object in the process.

Request with curl command line

curl -iT wind.jpg "http://default.default.hcp.example.com/fcfs_data/images/
wind.jpg?uid=10&gid=43&file_permissions=764"

Request in Python using PycURL

import pycurl
filehandle = open("wind.jpg", 'rb')
curl = pycurl.Curl()
curl.setopt(pycurl.URL, "http://default.default.hcp.example.com/ \
fcfs_data/images/wind.jpg?uid=10&gid=43&file_permissions=764")

curl.setopt(pycurl.UPLOAD, 1)
curl.setopt(pycurl.INFILESIZE, os.path.getsize("wind.jpg"))
curl.setopt(pycurl.READFUNCTION, filehandle.read)
curl.perform()
print curl.getinfo(pycurl.RESPONSE_CODE)
curl.close()
filehandle.close()

Header Description

X-ArcHash The cryptographic hash algorithm HCP uses and the
cryptographic hash value of the stored object, in this
format:

 X-ArcHash: hash-algorithm hash-value

You can use the returned hash value to verify that the
stored data is the same as the data you sent. To do so,
compare this value with a hash value that you generate
from the original data.
Chapter 4: HTTP 117

Using the Default Namespace

Working with system metadata
Request headers

PUT /fcfs_data/images/wind.jpg?uid=10&gid=43&file_permissions=764 HTTP/1.1
Host: default.default.hcp.example.com
Content-Length: 5421780

Response headers

HTTP/1.1 201 Created
X-ArcServicedBySystem: hcp.example.com
Location: /fcfs_data/images/wind.jpg
X-ArcHash: SHA-256 E830B86212A66A792A79D58BB185EE63A4FADA76BB8A1C25...
X-ArcClusterTime: 1333828702
Content-Length: 0

Example 2: Overriding the default retention setting
Here’s a sample HTTP PUT request that stores an object named fire.jpg in
the default namespace and, in the process, overrides the default retention
setting for the object by assigning the object to a retention class.

Request with curl command line

curl -iT wind.jpg "http://default.default.hcp.example.com/fcfs_data/images/
fire.jpg?retention=C+Reg-107"

Request in Python using PycURL

import pycurl
filehandle = open("fire.jpg", 'rb')
curl = pycurl.Curl()
curl.setopt(pycurl.URL, "http://default.default.hcp.example.com/ \
fcfs_data/images/wind.jpg?retention=C+Reg-107")

curl.setopt(pycurl.UPLOAD, 1)
curl.setopt(pycurl.INFILESIZE, os.path.getsize("wind.jpg"))
curl.setopt(pycurl.READFUNCTION, filehandle.read)
curl.perform()
print curl.getinfo(pycurl.RESPONSE_CODE)
curl.close()
filehandle.close()

Request headers

PUT /fcfs_data/images/wind.jpg?retention=C+Reg-107 HTTP/1.1
Host: default.default.hcp.example.com
Content-Length: 5421780
118 Chapter 4: HTTP

Using the Default Namespace

Working with system metadata
Response headers

HTTP/1.1 201 Created
X-ArcServicedBySystem: hcp.example.com
Location: /fcfs_data/images/wind.jpg
X-ArcHash: SHA-256 38CF3DC9001F01588937A53DF0C9D0ADF4C7C7D147B1A107...
X-ArcClusterTime: 1333828702
Content-Length: 0

Specifying metadata on directory creation

When you use the HTTP MKDIR method to create one or more directories in
the default namespace, you can override the defaults for this POSIX
metadata:

• Owner ID and group ID

• Permissions

• atime and mtime

You use query parameters to override the metadata defaults.

Request contents
The MKDIR request must specify these HTTP elements:

• A URL with the path of the new directory.

• One or more query parameters to set the metadata values. These
parameters are case sensitive.

The table below describes the query parameters you can use to override
directory metadata defaults.

Parameter Description

uid The user ID of the directory owner for all new directories in
the directory path. Valid values are integers greater than or
equal to zero.

gid The ID of the owning group for all new directories in the
directory path. Valid values are integers greater than or
equal to zero.

directory_permissions The POSIX permissions for all new directories in the
directory path, specified as a three-digit octal value. For
more information on permission values, see “Octal
permission values” on page 38.
Chapter 4: HTTP 119

Using the Default Namespace

Working with system metadata
Request-specific return codes
The table below describes the return codes that have specific meaning for
this request. For descriptions of all possible return codes, see “HTTP return
codes” on page 204.

Request-specific response headers
This request does not have any request-specific response headers. For
information on all HCP-specific response headers, see “HCP-specific HTTP
response headers” on page 209.

Example: Overriding owner, group, and permissions
Here’s a sample HTTP MKDIR request that creates a directory named
images in the default namespace, overriding the default owner, group, and
permissions for the directory in the process.

Request with curl command line

curl -iX MKDIR "http://default.default.hcp.example.com/fcfs_data/images?uid=10
&gid=43&directory_permissions=764"

atime The POSIX atime value for all new directories in the
directory path, specified as seconds since January 1, 1970,
at 00:00:00 UTC.

mtime The POSIX mtime value for all new directories in the
directory path, specified as seconds since January 1, 1970,
at 00:00:00 UTC.

Code Meaning Description

201 Created HCP successfully created the directory.

403 Forbidden One of:

• The namespace does not exist.

• The access method (HTTP or HTTPS) is disabled.

• You do not have permission to create a directory in
the specified location.

• The request contains an unsupported query
parameter or an invalid value for a query parameter.

409 Conflict HCP could not create the directory in the namespace
because the directory already exists.

 (Continued)

Parameter Description
120 Chapter 4: HTTP

Using the Default Namespace

Working with system metadata
Request in Python using PycURL

import pycurl
curl = pycurl.Curl()
curl.setopt(pycurl.URL, "http://default.default.hcp.example.com/ \
fcfs_data/images?uid=10&gid=43&directory_permissions=764")

curl.setopt(pycurl.CUSTOMREQUEST, "MKDIR")
curl.perform()
print curl.getinfo(pycurl.RESPONSE_CODE)
curl.close()

Request headers

MKDIR /fcfs_data/images?uid=10&gid=43&directory_permissions=764 HTTP/1.1
Host: default.default.hcp.example.com

Response headers

HTTP/1.1 201 Created
X-ArcServicedBySystem: hcp.example.com
Location: /fcfs_data/images
Content-Length: 0

Retrieving HCP-specific metadata

You use the HTTP GET method to retrieve HCP-specific metadata for an
object or directory. You do this by retrieving the contents of the metafile
that contains the information. You can retrieve the contents of any
metafile, including core-metadata.xml. For detailed information on the
metafiles for objects and directories, see “Metafiles” on page 21.

Request contents
The GET request must specify the URL of the metafile that contains the
metadata you want.

Request-specific return codes
The table below describes the return codes that have specific meaning for
this request. For descriptions of all possible return codes, see “HTTP return
codes” on page 204.

Code Meaning Description

200 OK HCP successfully retrieved the metafile.

404 Not Found HCP could not find the specified metafile.
Chapter 4: HTTP 121

Using the Default Namespace

Working with system metadata
Request-specific response headers
The table below describes the request-specific response headers returned
by a successful request. For information on all HCP-specific response
headers, see “HCP-specific HTTP response headers” on page 209.

Response body
The body of the HTTP response contains the contents of the requested
metafile.

Example: Getting the retention setting for an object
Here’s a sample HTTP GET request that retrieves the contents of the
retention.txt metafile for the images/wind.jpg object.

Request with curl command line

curl -i "http://default.default.hcp.example.com/fcfs_metadata/images/wind.jpg/
retention.txt"

Request in Python using PycURL

import pycurl
import StringIO
cin = StringIO.StringIO()
curl = pycurl.Curl()
curl.setopt(pycurl.URL, "http://default.default.hcp.example.com/ \
fcfs_metadata/images/wind.jpg/retention.txt")

curl.setopt(pycurl.WRITEFUNCTION, cin.write)
curl.perform()
print curl.getinfo(pycurl.RESPONSE_CODE)
print cin.getvalue()
curl.close()

Header Description

X-ArcPermissionsUidGid The POSIX permissions (mode), owner ID, and group ID
for the metafile, in this format:

X-ArcPermissionsUidGid: mode=posix-mode; uid=uid;
gid=gid

X-ArcSize The size of the metafile, in bytes.

X-ArcTimes The POSIX ctime, mtime, and atime values for the
metafile, in this format:

X-ArcTimes: ctime=ctime; mtime=mtime; atime=atime
122 Chapter 4: HTTP

Using the Default Namespace

Working with system metadata
Request headers

GET /fcfs_metadata/images/wind.jpg HTTP/1.1
Host: default.default.hcp.example.com

Response headers

HTTP/1.1 200 OK
X-ArcClusterTime: 1333828702
Content-Type: text/plain
Content-Length: 128
X-ArcPermissionsUidGid: mode=0100644; uid=0; gid=0
X-ArcServicedBySystem: hcp.example.com
X-ArcTimes: ctime=1323449971; mtime=1323449971; atime=1323449971
X-ArcSize: 128

Response body

1922272200
2030-11-30T8:30:00-0400 (Reg-107, A+21y)

Retrieving POSIX metadata

To retrieve the POSIX metadata (UID, GID, permissions, atime, mtime, and
ctime) for an object or directory, check object or directory existence as
described in “Checking the existence of an object” on page 86 and
“Checking the existence of a directory” on page 106.

The POSIX metadata is also returned when you retrieve the object or list
the contents of the directory.

Modifying HCP-specific metadata

You use the PUT method to change this HCP-specific metadata for existing
objects and directories:

• Retention setting

• Shred setting

• Index setting

You change these settings by overwriting the applicable metafile, such as
retention.txt.
Chapter 4: HTTP 123

Using the Default Namespace

Working with system metadata
Request contents
The PUT request must include these HTTP elements:

• The URL of the metafile you are overwriting

• The new metadata value as the request body

The body content depends on the metafile being overwritten. The table
below lists the metafiles and the values you can specify.

Request-specific return codes
The table below describes the HTTP return codes that have specific
meanings for this request. For descriptions of all possible return codes,
see “HTTP return codes” on page 204.

Request-specific response headers
This request does not have any request-specific response headers. For
information on all HCP-specific response headers, see “HCP-specific HTTP
response headers” on page 209.

Example: Changing the retention setting for an existing object
Here’s a sample HTTP PUT request that assigns the images/wind.jpg file to
the Reg-107 retention class.

Metafile Valid values

index.txt 0 (zero) or 1 (one)

For the metadata query engine, zero means don’t index
custom metadata. One means index custom metadata.

For the HCP search facility, zero means don’t index the
object. One means index the object.

retention.txt Any valid retention setting. For more information, see
“Changing retention settings” on page 45.

shred.txt 0 or 1

Zero means don’t shred. One means shred.

Code Meaning Description

201 Created HCP successfully stored the metafile.

400 Bad Request The request is trying to store a metafile for a nonexistent
object.
124 Chapter 4: HTTP

Using the Default Namespace

Working with system metadata
Request with curl command line

echo C+Reg-107 | curl -iT - "http://default.default.hcp.example.com/
fcfs_metadata/images/wind.jpg/retention.txt"

Request in Python using PycURL

import pycurl
import StringIO
data = "C+Reg-107"
cin = StringIO.StringIO(data)
curl = pycurl.Curl()
curl.setopt(pycurl.READFUNCTION, cin.read)
curl.setopt(pycurl.URL, "http://default.default.hcp.example.com/ \
fcfs_metadata/images/wind.jpg/retention.txt")

curl.setopt(pycurl.UPLOAD, 1)
curl.perform()
print curl.getinfo(pycurl.RESPONSE_CODE)
curl.close()

Request headers

PUT /fcfs_metadata/images/wind.jpg/retention.txt HTTP/1.1
Host: default.default.hcp.example.com

Response headers

HTTP/1.1 201 Created
X-ArcServicedBySystem: hcp.example.com
X-ArcClusterTime: 1333828702
Content-Length: 0

Modifying POSIX metadata

You use these HCP-specific methods to change the POSIX metadata for
existing objects and directories:

• CHMOD changes the permissions

• CHOWN changes the POSIX user ID and group ID

• TOUCH changes atime and mtime

Note: The namespace can be configured to disallow permission, owner,
and group changes through the HTTP protocol. It can also be configured
to disallow these changes through any protocol for objects that are under
retention. To find out how your namespace is configured, see your
namespace administrator.
Chapter 4: HTTP 125

Using the Default Namespace

Working with system metadata
You cannot use the CHMOD or CHOWN method on a symbolic link. Using
TOUCH on a symbolic link changes the applicable value for the object that’s
the target of the link.

You cannot use HTTP TOUCH to create new objects the way you can with
the Unix touch command.

Request contents
The request must include these HTTP elements:

• The method: CHOWN, CHMOD, or TOUCH

• The object URL in one of these formats:

– The object path

– If the object is indexed by the search facility selected for use with
the Search Console, the cryptographic hash value for the object

For information on using a hash value to identify an object, see
“Access with a cryptographic hash value” on page 73.

• One or more query parameters specifying the new metadata

The table below lists the query parameters for each method.

Method Parameters Description

CHMOD permissions=octal-
permission-value

The permissions parameter specifies the new
POSIX permissions for the object or directory
as an octal value. For more information on
permission values, see “Octal permission
values” on page 38.

CHOWN Both:

uid=user-id
gid=group-id

The uid parameter specifies the POSIX user ID
of the object or directory owner. The gid
parameter specifies the POSIX group ID of the
owning group for the object or directory. Valid
values for both parameters are integers
greater than or equal to zero.

To change only one value, specify the new
value for the changed ID and the current
value for the unchanged ID.
126 Chapter 4: HTTP

Using the Default Namespace

Working with system metadata
Request-specific return codes
The table below describes the return codes that have specific meaning for
this request. For descriptions of all possible return codes, see “HTTP return
codes” on page 204.

TOUCH Either or both:

atime=value
mtime=value

The atime parameter specifies the new POSIX
atime value for the object or directory. The
mtime parameter specifies the new POSIX
mtime value for the object or directory. Valid
values for both parameters are seconds since
January 1, 1970, at 00:00:00 UTC or, for the
current time, now.

Code Meaning Description

200 OK HCP successfully changed the object or directory metadata.

300 Multiple Choice For a request by cryptographic hash value, HCP found two or
more objects with the specified hash value.

400 Bad request One of:

• The URL in the request is not well-formed.

• The request specifies a cryptographic hash value that’s
not valid for the specified cryptographic hash algorithm.

• The request does not contain a required query
parameter:

- For CHMOD, the permissions parameter is missing.

- For CHOWN, one or both of the uid and gid
parameters are missing.

- For TOUCH, both of the atime and mtime
parameters are missing.

• The request contains an unsupported query parameter
or an invalid value for a query parameter.

If more information about the error is available, the
HTTP response headers include the HCP-specific
X-ArcErrorMessage header.

 (Continued)

Method Parameters Description
Chapter 4: HTTP 127

Using the Default Namespace

Working with system metadata
Request-specific response headers
This request does not have any request-specific response headers. For
information on all HCP-specific response headers, see “HCP-specific HTTP
response headers” on page 209.

Example 1: Changing the permissions for an existing object
Here’s a sample HTTP CHMOD request that changes the permissions for the
object named wind.jpg to 755.

403 Forbidden One of:

• The namespace does not exist.

• The access method (HTTP or HTTPS) is disabled.

• You do not have permission to change the specified
metadata for the object or directory.

• For the CHOWN or CHMOD method, the URL specifies a
symbolic link.

404 Not Found HCP could not find the specified object or directory.

If the request specifies a cryptographic hash value, this
return code can indicate that the object has not been
indexed by the search facility selected for use with the
Search Console.

If the HDDS search facility is selected for use with the
Search Console and the request specifies a cryptographic
hash value, this return code can indicate that the value was
found in HDDS but the object could not be retrieved from
HCP.

503 Service
Unavailable

For a request by cryptographic hash value, one of:

• The cryptographic hash algorithm specified in the
request is not the one the namespace is using.

• HCP cannot process the hash value because no search
facility is selected for use with the Search Console.

• The request URL specifies a namespace other than the
default namespace.

 (Continued)

Code Meaning Description
128 Chapter 4: HTTP

Using the Default Namespace

Working with system metadata
Request with curl command line

curl -iX CHMOD "http://default.default.hcp.example.com/fcfs_data/images/
wind.jpg?permissions=755"

Request in Python using PycURL

import pycurl
curl = pycurl.Curl()
curl.setopt(pycurl.URL, "http://default.default.hcp.example.com/ \
fcfs_data/images/wind.jpg?permissions=755")

curl.setopt(pycurl.CUSTOMREQUEST, "CHMOD")
curl.perform()
print curl.getinfo(pycurl.RESPONSE_CODE)
curl.close()

Request headers

CHMOD /fcfs_data/images/wind.jpg?permissions=755 HTTP/1.1
Host: default.default.hcp.example.com

Response headers

HTTP/1.1 200 OK
X-ArcServicedBySystem: hcp.example.com
Content-Length: 0

Example 2: Changing the user and group IDs for an existing object
Here’s a sample HTTP CHOWN request that changes the owner ID and
group ID for the object named wind.jpg to 22 and 17, respectively.

Request with curl command line

curl -iX CHOWN "http://default.default.hcp.example.com/fcfs_data/images/
wind.jpg?uid=22&gid=17"

Request in Python using PycURL

import pycurl
curl = pycurl.Curl()
curl.setopt(pycurl.URL, "http://default.default.hcp.example.com/ \
fcfs_data/images/wind.jpg?uid=22&gid=17")

curl.setopt(pycurl.CUSTOMREQUEST, "CHOWN")
curl.perform()
print curl.getinfo(pycurl.RESPONSE_CODE)
curl.close()
Chapter 4: HTTP 129

Using the Default Namespace

Working with system metadata
Request headers

CHOWN /fcfs_data/images/wind.jpg?uid=22&gid=17 HTTP/1.1
Host: default.default.hcp.example.com

Response headers

HTTP/1.1 200 OK
X-ArcServicedBySystem: hcp.example.com
Content-Length: 0

Example 3: Changing the atime value for an existing object
Here’s a sample HTTP TOUCH request that changes the atime value for the
object named wind.jpg to September 9, 2015, at 4:00 p.m. UTC.

Request with curl command line

curl -iX TOUCH "http://default.default.hcp.example.com/fcfs_data/images/
wind.jpg?atime=1441814400"

Request in Python using PycURL

import pycurl
curl = pycurl.Curl()
curl.setopt(pycurl.URL, "http://default.default.hcp.example.com/ \
fcfs_data/images/wind.jpg?atime=1441814400")

curl.setopt(pycurl.CUSTOMREQUEST, "TOUCH")
curl.perform()
print curl.getinfo(pycurl.RESPONSE_CODE)
curl.close()

Request headers

TOUCH /fcfs_data/images/wind.jpg?atime=1441814400 HTTP/1.1
Host: default.default.hcp.example.com

Response headers

HTTP/1.1 200 OK
X-ArcServicedBySystem: hcp.example.com
Content-Length: 0
130 Chapter 4: HTTP

Using the Default Namespace

Working with custom metadata
Working with custom metadata

You can perform these operations on custom metadata for an object:

• Store or replace the custom metadata

• Check the existence of custom metadata

• Retrieve the custom metadata

• Delete the custom metadata

Storing custom metadata

You use an HTTP PUT request to store or replace custom metadata for an
existing object. The namespace can be configured to require custom
metadata to be well-formed XML. In this case, HCP rejects custom
metadata that is not well-formed XML and returns a 400 error code.

Custom metadata is stored as a single unit. You can add it or replace it in
its entirety, but you cannot add to or change existing custom metadata. If
you store custom metadata for an object that already has custom
metadata, the new metadata replaces the existing metadata.

In addition to storing custom metadata for an existing object, you can use
a single request to store object data and custom metadata at the same
time. For more information on this, see “Storing an object and, optionally,
custom metadata” on page 77.

Request contents
The PUT request must include these HTTP elements:

• A URL specifying the path to the custom-metadata.xml file for the object.
The file name must be custom-metadata.xml, even if the custom
metadata is not in XML format.

• A body consisting of the custom metadata.

Note: For detailed information on custom metadata, including possible
limitations on operations on custom metadata for objects under retention,
see “Custom metadata” on page 60.
Chapter 4: HTTP 131

Using the Default Namespace

Working with custom metadata
Request contents — sending data in compressed format
You can send custom metadata in compressed format and have HCP
decompress the data before storing it. To do this, in addition to specifying
the request elements listed above:

• Use gzip to compress the custom metadata before sending it.

• Include a Content-Encoding request header with a value of gzip.

• Use a chunked transfer encoding.

Request-specific return codes
The table below describes the return codes that have specific meaning for
this request. For descriptions of all possible return codes, see “HTTP return
codes” on page 204.

Code Meaning Description

201 Created HCP successfully stored the custom metadata.

400 Bad Request One of:

• The URL in the request is not well-formed.

• The namespace has custom metadata XML checking
enabled, and the request includes custom metadata
that is not well-formed XML.

• The request is trying to store custom metadata for a
directory or symbolic link.

• The request has a Content-Encoding header that
specifies gzip, but the custom metadata is not in
gzip-compressed format.

If more information about the error is available, the
HTTP response headers include the HCP-specific
X-ArcErrorMessage header.

404 Not Found HCP could not find the object for which the custom
metadata is being stored.

409 Conflict The object for which the custom metadata is being stored
was ingested using CIFS or NFS and the lazy close period
for the object has not expired.
132 Chapter 4: HTTP

Using the Default Namespace

Working with custom metadata
Request-specific response headers
The table below describes the request-specific response headers. For
information on all HCP-specific response headers, see “HCP-specific HTTP
response headers” on page 209.

Example: Storing custom metadata for an object
Here’s a sample HTTP PUT request that stores the custom metadata
specified in the wind.custom-metadata.xml file for an existing object named
wind.jpg.

Request with curl command line

curl -iT wind.custom-metadata.xml "http://default.default.hcp.example.com/
fcfs_metadata/images/wind.jpg/custom-metadata.xml"

413 File too Large One of:

• Not enough space is available to store the custom
metadata. Try the request again after objects are
deleted from the namespace or the system storage
capacity is increased.

• The request is trying to store custom metadata that is
larger than one GB. HCP cannot store custom
metadata larger than one GB.

415 Unsupported
Media Type

The request has a Content-Encoding header with a value
other than gzip.

Header Description

X-ArcHash The cryptographic hash algorithm HCP uses and the
cryptographic hash value of the stored XML, in this
format:

 X-ArcHash: hash-algorithm hash-value

You can use the returned hash value to verify that the
stored data is the same as the data you sent. To do so,
compare this value with a hash value that you generate
from the original data.

 (Continued)

Code Meaning Description
Chapter 4: HTTP 133

Using the Default Namespace

Working with custom metadata
Request in Python using PycURL

import pycurl
filehandle = open("wind.custom-metadata.xml", 'rb')
curl = pycurl.Curl()
curl.setopt(pycurl.URL, "http://default.default.hcp.example.com/ \
fcfs_metadata/images/wind.jpg/custom-metadata.xml")

curl.setopt(pycurl.UPLOAD, 1)
curl.setopt(pycurl.INFILESIZE,
os.path.getsize("wind.custom-metadata.xml"))

curl.setopt(pycurl.READFUNCTION, filehandle.read)
curl.perform()
print curl.getinfo(pycurl.RESPONSE_CODE)
curl.close()
filehandle.close()

Request headers

PUT /fcfs_metadata/images/wind.jpg/custom-metadata.xml HTTP/1.1
Host: default.default.hcp.example.com
Content-Length: 317

Response headers

HTTP/1.1 201 Created
X-ArcServicedBySystem: hcp.example.com
X-ArcHash: SHA-256

 20BA1FDC958D8519D11A4CC2D6D65EC64DD12466E456A32DB800D9FC329A02B9
Location: /fcfs_metadata/images/wind.jpg/custom-metadata.xml
X-ArcClusterTime: 1333828702
Content-Length: 0

For more information on custom-metadata.xml files, see “Custom metadata”
on page 60.

Checking the existence of custom metadata

You use the HTTP HEAD method to check whether an object has custom
metadata.

Request contents
The HEAD request must specify the URL of the custom-metadata.xml file.
134 Chapter 4: HTTP

Using the Default Namespace

Working with custom metadata
Request-specific return codes
The table below describes the return codes that have specific meaning for
this request. For descriptions of all possible return codes, see “HTTP return
codes” on page 204.

Request-specific response headers
The table below describes the request-specific response headers. For
information on all HCP-specific response headers, see “HCP-specific HTTP
response headers” on page 209.

Example: Checking the existence of custom metadata
Here’s a sample HTTP HEAD request that checks the existence of custom
metadata for the images/wind.jpg object.

Request with curl command line

curl -iI "http://default.default.hcp.example.com/fcfs_metadata/images/wind.jpg/
custom-metadata.xml"

Code Meaning Description

200 OK HCP found the custom metadata.

204 No Content The specified object does not have custom metadata.

404 Not Found HCP could not find the specified object.

Header Description

X-ArcPermissionsUidGid The POSIX permissions (mode), owner ID, and group ID
for the custom metadata metafile. These values are the
same as those for the object. The header has this
format:

X-ArcPermissionsUidGid: mode=posix-mode; uid=uid;
gid=gid

X-ArcSize The size of the custom-metadata.xml file, in bytes.

X-ArcTimes The POSIX ctime, mtime, and atime values for the
custom-metadata.xml file. These values are the same
as those for the object. The header has this format:

X-ArcTimes: ctime=ctime; mtime=mtime; atime=atime
Chapter 4: HTTP 135

Using the Default Namespace

Working with custom metadata
Request in Python using PycURL

import pycurl
import StringIO
cin = StringIO.StringIO()
curl = pycurl.Curl()
curl.setopt(pycurl.URL, "http://default.default.hcp.example.com/ \
fcfs_metadata/images/wind.jpg/custom-metadata.xml")

curl.setopt(pycurl.HEADER, 1)
curl.setopt(pycurl.NOBODY, 1)
curl.setopt(pycurl.WRITEFUNCTION, cin.write)
curl.perform()
print curl.getinfo(pycurl.RESPONSE_CODE)
print cin.getvalue()
curl.close()

Request headers

HEAD /fcfs_data/images/wind.jpg/custom-metadata.xml HTTP/1.1
Host: default.default.hcp.example.com

Response headers

HTTP/1.1 200 OK
X-ArcClusterTime: 1333828702
Content-Type: text/xml
Content-Length: 317
X-ArcPermissionsUidGid: mode=0100644; uid=0; gid=0
X-ArcServicedBySystem: hcp.example.com
X-ArcTimes: ctime=1323449971; mtime=1323449971; atime=1323449971
X-ArcSize: 317

Retrieving custom metadata

You use the HTTP GET method to retrieve the custom metadata for an
object.

You can also use a single request to retrieve object data and custom
metadata at the same time. For more information, see “Retrieving an
object and, optionally, custom metadata” on page 89.

Request contents
The GET request must specify the URL of the custom-metadata.xml file.
136 Chapter 4: HTTP

Using the Default Namespace

Working with custom metadata
Request contents – retrieving data in compressed format
To request that HCP return the custom metadata in gzip-compressed
format, use an Accept-Encoding header containing the value gzip or *. The
header can specify additional compression algorithms but HCP uses only
gzip.

Request contents — choosing not to wait for delayed retrievals
HCP may detect that a GET request will take a significant amount of time to
return custom metadata. You can choose to have the request fail in this
situation instead of waiting for HCP to return the custom metadata. To do
this, in addition to specifying the request elements listed in “Request
contents” above, use the nowait query parameter.

When a GET request fails because the request would take a significant
amount of time to return an object and the nowait parameter is specified,
HCP returns an HTTP 503 (Service Unavailable) error code.

Request-specific return codes
The table below describes the return codes that have specific meaning for
this request. For descriptions of all possible return codes, see “HTTP return
codes” on page 204.

Tip: If the request specifies nowait and HCP returns an HTTP 503 error
code, retry the request a few times, waiting about thirty seconds in
between retries.

Code Meaning Description

200 OK HCP successfully retrieved the custom metadata.

204 No Content The object does not have custom metadata.

404 Not Found HCP could not find the specified object.

406 Not Acceptable The request has an Accept-Encoding header that does not
include gzip or specify *.

503 Service
Unavailable

The request specifies the nowait query parameter, and
HCP determined that the request would have taken a
significant amount of time to return the custom metadata.
Chapter 4: HTTP 137

Using the Default Namespace

Working with custom metadata
Request-specific response headers
The table below describes request-specific response headers. For
information on all HCP-specific response headers, see “HCP-specific HTTP
response headers” on page 209.

Response body
The body of the HTTP response contains the custom metadata.

Example: Retrieving custom metadata for an object
Here’s a sample HTTP GET request that retrieves custom metadata for an
object named wind.jpg in the images directory and saves the results in the
wind.custom-metadata.xml file.

Request with curl command line

curl -i "http://default.default.hcp.example.com/fcfs_metadata/images/wind.jpg/
custom-metadata.xml" > wind.custom-metadata.xml

Header Description

Content-Encoding Returned only if HCP compressed the custom metadata
before returning it.

Always gzip.

X-ArcContentLength Returned only if HCP compressed the custom metadata
before returning it.

The length of the stored custom metadata before
compression.

X-ArcPermissionsUidGid The POSIX permissions (mode), owner ID, and group ID
for the custom-metadata.xml file. These values are the
same as those for the object. The header has this
format:

X-ArcPermissionsUidGid: mode=posix-mode; uid=uid;
gid=gid

X-ArcSize The size of the custom-metadata.xml file, in bytes.

X-ArcTimes The POSIX ctime, mtime, and atime values for the
custom-metadata.xml file. These values are the same
as those for the object. The header has this format:

X-ArcTimes: ctime=ctime; mtime=mtime; atime=atime
138 Chapter 4: HTTP

Using the Default Namespace

Working with custom metadata
Request in Python using PycURL

import pycurl
filehandle = open("wind.custom-metadata.xml", 'wb')
curl = pycurl.Curl()
curl.setopt(pycurl.URL, "http://default.default.hcp.example.com/ \
fcfs_metadata/images/wind.jpg/custom-metadata.xml")

curl.setopt(pycurl.WRITEFUNCTION, filehandle.write)
curl.perform()
print curl.getinfo(pycurl.RESPONSE_CODE)
filehandle.close()
curl.close()
filehandle = open("custom-metadata.xml", 'rb')
print filehandle.read()
filehandle.close()

Request headers

GET /fcfs_metadata/images/wind.jpg/custom-metadata.xml HTTP/1.1
Host: default.default.hcp.example.com

Response headers

HTTP/1.1 200 OK
X-ArcClusterTime: 1333828702
Content-Type: text/xml
Content-Length: 317
X-ArcPermissionsUidGid: mode=0100644; uid=0; gid=0
X-ArcTimes: ctime=1323449971; mtime=1323449971; atime=1323449971
X-ArcServicedBySystem: hcp.example.com
X-ArcSize: 317

Deleting custom metadata

You use the HTTP DELETE method to delete the custom metadata for an
object.

Request contents
The DELETE request must specify the URL of the custom-metadata.xml file.
Chapter 4: HTTP 139

Using the Default Namespace

Working with custom metadata
Request-specific return codes
The table below describes the return codes that have specific meaning for
this request. For descriptions of all possible return codes, see “HTTP return
codes” on page 204.

Request-specific response headers
This request does not have any request-specific response headers. For
information on all HCP-specific response headers, see “HCP-specific HTTP
response headers” on page 209.

Example: Deleting custom metadata
Here’s a sample HTTP DELETE request that deletes the custom metadata
for the object named earth.jpg.

Request with curl command line

curl -iX DELETE "http://default.default.hcp.example.com/fcfs_metadata/images/
earth.jpg/custom-metadata.xml"

Request in Python using PycURL

import pycurl
curl = pycurl.Curl()
curl.setopt(pycurl.URL, "http://default.default.hcp.example.com/ \
fcfs_metadata/images/earth.jpg/custom-metadata.xml")

curl.setopt(pycurl.CUSTOMREQUEST, "DELETE")
curl.perform()
print curl.getinfo(pycurl.RESPONSE_CODE)
curl.close()

Request headers

DELETE /fcfs_metadata/images/earth.jpg/custom-metadata.xml HTTP/1.1
Host: default.default.hcp.example.com

Code Meaning Description

200 OK HCP successfully deleted the custom metadata.

204 No Content The specified object does not have custom metadata.

404 Not Found HCP could not find the object for which you are trying to
delete the custom metadata.

409 Conflict HCP could not delete the custom metadata because the
custom metadata is currently being written to the
namespace.
140 Chapter 4: HTTP

Using the Default Namespace

Checking the available storage and software version
Response headers

HTTP/1.1 200 OK
X-ArcServicedBySystem: hcp.example.com
X-ArcClusterTime: 1333828702
Content-Length: 0

Checking the available storage and software version

You use the HTTP HEAD method to check the amount of space currently
available for storing additional objects in the namespace and the version
number of the HCP software.

Request contents
The HEAD request must specify the namespace URL.

Request-specific return codes
A valid request results in a 200 (OK) return code. For descriptions of all
possible return codes, see “HTTP return codes” on page 204.

An invalid URL typically results in a failure to resolve the specified
hostname and does not return an error code.
Chapter 4: HTTP 141

Using the Default Namespace

Checking the available storage and software version
Request-specific response headers
The table below describes the request-specific response headers. For
information on all HCP-specific response headers, see “HCP-specific HTTP
response headers” on page 209.

Example: Checking the available storage
Here’s a sample HTTP HEAD request that checks the amount of available
storage for the default namespace in the system named hcp.example.com.

Request with curl command line

curl -I "http://default.default.hcp.example.com"

Request in Python using PycURL

import pycurl
import StringIO
cin = StringIO.StringIO()
curl = pycurl.Curl()
curl.setopt(pycurl.URL, "http://default.default.hcp.example.com")
curl.setopt(pycurl.HEADER, 1)
curl.setopt(pycurl.NOBODY, 1)
curl.setopt(pycurl.WRITEFUNCTION, cin.write)
curl.perform()

Header Description

X-ArcAvailableCapacity The amount of storage space in the default namespace
currently available for storing additional objects, in bytes.
Storage space is used for object data, metadata, any
redundant data required by the DPL, and the metadata
query engine index.

The header has this format:

X-ArcAvailableCapacity: available-bytes

X-ArcTotalCapacity The total amount of storage space in the HCP system, in
bytes. This value includes both used and available space.

The header has this format:

X-ArcTotalCapacity: total-bytes

X-ArcSoftwareVersion The version number of the HCP software.

Note: The values returned in the X-ArcAvailableCapacity and
X-ArcTotalCapacity headers can exceed 32-bit integers. You should ensure
that any variables used to hold these values can handle the larger
numbers.
142 Chapter 4: HTTP

Using the Default Namespace

HTTP usage considerations
print curl.getinfo(pycurl.RESPONSE_CODE)
print cin.getvalue()
curl.close()

Request headers

HEAD / HTTP/1.1
Host: default.default.hcp.example.com

Response headers

HTTP/1.1 200 OK
Content-Type: text/xml
X-ArcClusterTime: 1333828702
X-ArcAvailableCapacity: 552466767872
X-ArcTotalCapacity: 562099757056
X-ArcSoftwareVersion: 6.0.1.64
Content-Length: 1167

HTTP usage considerations

The following sections present considerations that affect the use of the
HTTP protocol for namespace access. For additional considerations that
are not specific to the HTTP protocol, see Chapter 9, “General usage
considerations,” on page 191.

HTTP permission checking

The namespace configuration specifies the level of permission checking on
HTTP requests:

• No permission checking — HCP doesn’t check permissions for any
operations.

• Permission checking only on the first file or directory — If you’re
adding an object to the namespace, HCP checks the permissions only
for the target directory. If you’re performing an operation on an
existing object, HCP checks the permissions only for that object.

• Strict POSIX permission checking — For all operations, HCP checks
permissions for the target object as well as for all directories in the path
to that object.

Strict permission checking enhances the security of stored data but results
in slower performance. With no permission checking, performance is
unaffected, but the security benefit is lost.
Chapter 4: HTTP 143

Using the Default Namespace

HTTP usage considerations
To learn the level of HTTP permission checking in effect for the namespace,
see your namespace administrator.

HTTP persistent connections

HCP supports HTTP persistent connections. Following a request for an
operation, HCP keeps the connection open for 60 seconds so a subsequent
request can use the same connection.

Persistent connections enhance performance because they avoid the
overhead of opening and closing multiple connections. In conjunction with
persistent connections, using multiple threads so that operations can run
concurrently provides still better performance.

If the persistent connection timeout period is too short, tell your
namespace administrator.

Storing zero-sized files with HTTP

When you store a zero-sized file with HTTP, the resulting object has no
data. Because HTTP causes a flush and a close even when no data is
present, this object is WORM and is treated like any other object in the
namespace.

Using HTTP with objects open for write

These considerations apply to using HTTP to access objects that are open
for write:

• If you try to write to the object, HCP returns a 409 (Conflict) error.

Note: With persistent connections, if a single node has more than 254
concurrent open connections, those above the first 254 may have to wait
as long as ten minutes to be serviced. This includes connections where
the request explicitly targeted the node, as well as connections where the
HCP DNS name resolved to the target node.

To avoid this issue, either don’t use persistent connections or ensure that
no more than 254 threads are working against a single node at any given
time.
144 Chapter 4: HTTP

Using the Default Namespace

HTTP usage considerations
• If try to retrieve, delete, or check the existence of an object that’s open
for write, HCP returns a 404 (Not Found) error code and does not
perform the operation.

Failed HTTP write operations

An HTTP write operation is considered to have failed if either of these is
true:

• The target node failed while the object was open for write.

• The TCP connection broke (for example, due to a front-end network
failure or the abnormal termination of the client application) while the
object was open for write.

Also, in some circumstances, a write operation is considered to have failed
if another node or other hardware failed while the object was open for
write.

If a write fails, HCP does not create a new object.

HTTP connection failure handling

You should retry an HTTP request if either of these happens:

• You (or an application) cannot establish an HTTP connection to the HCP
system.

• The connection breaks while HCP is processing a request. In this case,
the most likely cause is that the node processing the request became
unavailable.

When retrying the request:

• If the original request used the DNS name of the HCP system in the
URL, repeat the request in the same way.

Note: Depending on the timing, the delete request may result in a
busy error. In that case, wait one or two seconds and then try the
request again.

Tip: If a write operation fails, retry the request.
Chapter 4: HTTP 145

Using the Default Namespace

HTTP usage considerations
• If the original request used the IP address of a specific node, retry the
request using either the IP address of a different node or the DNS name
of the system.

If the connection breaks while HCP is processing a GET request, you may
not know whether the returned data is all or only some of the object data.
In this case, you can check the number of returned bytes against the
content length returned in the HTTP Content-Length response header. If
the numbers match, the returned data is complete.

Data chunking with HTTP write operations

In some cases, the size of the data to be sent to the namespace through
HTTP cannot be known at the start of a PUT request. For example, the size
is unknown if data is dynamically generated and the PUT request starts
before all data is available. This scenario would occur if you do not have
enough memory or disk space to stage dynamically generated data locally,
so the application streams the PUT request as the data is generated.

In such cases, you can send the data using chunked HTTP transfer coding.
Each chunk is sent with a known size, except for the last chunk, which is
sent with a size of 0 (zero).

If possible, you should avoid chunking data because it increases the
overhead required for the PUT operation.

Multithreading with HTTP

With HTTP, only one client can write to a given object at one time. A
multithreaded client can write to multiple objects at the same time but
cannot have multiple threads writing to the same object.

Multiple clients can use HTTP to read the same object concurrently.
Similarly, a multithreaded client can use multiple threads to read a single
object. However, because the reads can occur out of order, you generally
get better performance by using one thread per object.

HCP has a limit of 255 concurrent HTTP connections per node, with another
20 queued.

Note: HTTP and WebDAV share the same connection pool.
146 Chapter 4: HTTP

Using the Default Namespace

5

WebDAV

WebDAV is one of the industry-standard protocols HCP supports for
namespace access. To access the namespace through WebDAV, you can
write applications that use any standard WebDAV client library, or you can
use a command-line tool, such as cadaver, that supports WebDAV. You can
also use WebDAV to access the default namespace directly from a web
browser or other WebDAV client.

Using the WebDAV protocol, you can store, view, retrieve, and delete
objects. You can also add and delete custom metadata, as well as change
certain system metadata for existing objects.

HCP is compliant with WebDAV level 2, as specified by RFCs 2518 and
4918.

The HCP implementation of the WebDAV protocol is separate from the HCP
implementation of the HTTP protocol. Therefore, HCP extensions to HTTP
do not apply to WebDAV.

For you to access the default namespace through WebDAV, this protocol
must be enabled in the namespace configuration. If you cannot access the
namespace in this way, see your namespace administrator.

This chapter explains how to use WebDAV for namespace access.

The examples in this chapter use cadaver, which is freely available
open-source software. You can download cadaver from
http://www.webdav.org/cadaver. The examples use a version of cadaver
that was available at the time this book was written.

Note: This chapter uses the object and directory terminology that’s used
elsewhere in this book. An object is equivalent to a WebDAV resource. A
directory is equivalent to a WebDAV collection.
Chapter 5: WebDAV 147

Using the Default Namespace

http://www.webdav.org/cadaver

WebDAV methods
WebDAV methods

HCP supports most standard WebDAV methods, as indicated in the table
below.

Method Description

Supported methods

PUT Use this method to:

• Store an object in the namespace

• Add or replace custom metadata for an existing object

When you store an object in the namespace, HCP uses the ETag
response header to return the cryptographic hash value for the
object.

GET Use this method to retrieve an object, metafile, or directory from the
namespace.

HEAD Use this method to check whether an object, directory, or symbolic
link exists in the namespace.

MKCOL Use this method to create a new directory in the namespace.

PROPPATCH Use this method to:

• Change system metadata associated with an object.

• Store dead properties as custom metadata (when this capability
is enabled in the namespace configuration). For information on
this, see “Using the custom-metadata.xml file to store dead
properties” on page 160.

PROPFIND Use this method to retrieve metadata associated with an object,
including both system metadata and dead properties stored as
custom metadata. You can use PROPFIND to retrieve dead properties
only when the namespace is configured to store dead properties as
custom metadata.

COPY Use this method to copy an object from one location to another.

A request to copy an object fails if an object with the same name
already exists at the target location.

MOVE Use this method to move an object from one location to another.

A request to move an object fails if an object with the same name
already exists at the target location. Additionally, a MOVE request
fails if the source object is under retention.

DELETE Use this method to delete an object, directory, symbolic link, or
custom metadata from the namespace.
148 Chapter 5: WebDAV

Using the Default Namespace

URLs for WebDAV access to the default namespace
URLs for WebDAV access to the default namespace

Depending on the method you’re using and what you want to do, the URL
you specify can identify any of:

• The namespace as a whole

• A directory

• An object

• A symbolic link

• A metadirectory

• A metafile for an object or directory

LOCK Use this method to lock an object on a single node.

UNLOCK Use this method to unlock an object on a single node.

OPTIONS Use this method to see which WebDAV methods are supported for the
specified object, directory, or symbolic link.

Unsupported methods

POST N/A

TRACE N/A

 (Continued)

Method Description

Note: To access the namespace through WebDAV directly from a
Windows client, add the namespace as a network share, using any of the
URL formats described in “URL formats” below. When you share the
namespace in this way, it appears to be part of the local file system in
Windows Explorer in the same way it does with CIFS access. For
information on CIFS access to the default namespace, see “Namespace
access with CIFS” on page 168.
Chapter 5: WebDAV 149

Using the Default Namespace

URLs for WebDAV access to the default namespace
URL formats

The following sections show the URL formats you can use for default
namespace access. In these formats, you can identify the HCP system by
either DNS name or IP address. For information on the relative
advantages of DNS names and IP addresses, see “DNS name and IP
address considerations” on page 194.

If the HCP system does not support DNS, you can use the client hosts files
to enable access to the default namespace by hostname. For information
on configuring hostnames on the client system, see “Using a hosts file” on
page 193.

URL for the namespace as a whole
A URL that identifies the default namespace as a whole has one of these
formats:

http://default.default.hcp-domain-name/webdav

http://node-ip-address/webdav

For example:

http://default.default.hcp.example.com/webdav

URLs for objects, directories, and symbolic links
To access an object, directory, or symbolic link in the default namespace,
you use a URL that includes the fcfs_data directory. The format for this is
one of:

http://default.default.hcp-domain-name/webdav/fcfs_data
[/directory-path[/object-name]]

http://node-ip-address/webdav/fcfs_data[/directory-path
[/object-name]]

Here’s a sample URL that identifies a directory:

http://default.default.hcp.example.com/webdav/fcfs_data/Corporate/Employees

Note: The URL formats and examples that follow show http. Your
namespace administrator can configure the namespace to require SSL
security for the HTTP protocol. In this case, you need to specify https
instead of http in your URLs.
150 Chapter 5: WebDAV

Using the Default Namespace

URLs for WebDAV access to the default namespace
Here’s a sample URL that identifies an object:

http://192.168.210.16/webdav/fcfs_data/Corporate/Employees/
2193_John_Doe

You cannot tell from a URL whether it represents an object, directory, or
symbolic link.

URLs for metafiles and metadirectories
To access a metafile or metadirectory, you use a URL that includes the
fcfs_metadata metadirectory. The format for this is one of:

http://default.default.hcp-domain-name/webdav/fcfs_metadata/
metadirectory-path[/metafile-name]

http://node-ip-address/webdav/fcfs_metadata[/metadirectory-path
[/metafile-name]]

Here’s a sample URL that identifies a metadirectory:

http://192.168.210.16/webdav/fcfs_metadata/Corporate/Employees/2193_John_Doe

Here’s a sample URL that identifies a metafile:

http://default.default.hcp.example.com/webdav/fcfs_metadata/Corporate/
Employees/2193_John_Doe/shred.txt

URL considerations

The following considerations apply to specifying URLs in WebDAV requests
against the default namespace. For considerations that apply specifically
to naming new objects, see “Object naming considerations” on page 16.

URL length
The portion of a URL after fcfs_data or fcfs_metadata, excluding any
appended query parameters, is limited to 4,095 bytes. If a WebDAV
request includes a URL that violates that limit, HCP returns a status code of
414.

Note: You can browse the fcfs_metadata metadirectory with WebDAV only
when viewing the namespace in a web browser. For more information on
this, see “Browsing the namespace with WebDAV” on page 152.
Chapter 5: WebDAV 151

Using the Default Namespace

URLs for WebDAV access to the default namespace
Object names with non-ASCII, nonprintable characters
When you store an object or directory with non-ASCII, nonprintable
characters in its name, those characters are percent encoded in the name
displayed back to you. In the core-metadata.xml file for an object, those
characters are also percent encoded, but the percent signs (%) are not
displayed.

Regardless of how the name is displayed, the object or directory is stored
with its original name, and you can access it either by its original name or
by the name with the percent-encoded characters.

Percent-encoding for special characters
Some characters have special meaning when used in a URL and may be
interpreted incorrectly when used for other purposes. To avoid ambiguity,
percent-encode the special characters listed in the table below.

Percent-encoded values are not case sensitive.

Quotation marks with URLs in command lines
When using a command-line tool to access the default namespace through
WebDAV, you work in a Unix, Mac OS X, or Windows shell. Some
characters in the commands you enter may have special meaning to the
shell. For example, the ampersand (&) often indicates that a process
should be put in the background.

To avoid the possibility of the Windows, Unix, or Mac OS X shell
misinterpreting special characters in a URL, always enclose the entire URL
in double quotation marks.

Character Percent-encoded Value

Space %20

Tab %09

New line %0A

Carriage return %0D

+ %2B

% %25

%23

? %3F

& %26
152 Chapter 5: WebDAV

Using the Default Namespace

Browsing the namespace with WebDAV
Browsing the namespace with WebDAV

To view the namespace content in a web browser with WebDAV, enter a
WebDAV namespace access URL in the browser address field:

• If you enter the URL for the entire namespace, the browser lists the two
root directories, fcfs_data and fcfs_metadata.

• If you enter the URL for a directory or metadirectory, the browser lists
the contents of that directory.

• If you enter the URL for an object, the browser downloads the object
data and either opens it in the default application for the content type
or prompts to open or save it.

• If you enter the URL for a metafile, the browser downloads and displays
the contents of that metafile.

For the first two cases, HCP provides an XML stylesheet that determines
the appearance of the browser display. The sample browser window below
shows what this looks like for the images directory.

Note: Some browsers may not be able to successfully render pages
for directories that contain a very large number of objects, directories,
and symbolic links.

Tip: You can use the view-source option in the web browser to see the
XML that HCP returns.
Chapter 5: WebDAV 153

Using the Default Namespace

WebDAV properties
WebDAV properties

WebDAV properties are name/value pairs that provide information about
an object, directory, or symbolic link. To store and retrieve property
values, you use the PROPPATCH and PROPFIND methods, respectively.

Properties exist in XML namespaces. To fully identify a property, you need
to specify the namespace it’s in as well as the property name.

All the properties defined in the WebDAV specification are in the DAV:
namespace. So, for example, the standard WebDAV property named
creationdate is in the DAV: namespace.

For information on the standard WebDAV properties, see RFC 2518 or
4918.

Live and dead properties

Properties can be live or dead. Live properties are properties that are
known to the WebDAV server (in this case, HCP). The server can respond
to changes you make to these properties and can also dynamically modify
their values.

Dead properties are properties that are not known to the WebDAV server.
The server stores and retrieves these properties but does not do anything
else with them. Dead properties can be in any XML namespace.

A PROPFIND request for all properties returns both live and dead
properties. However, when responding to such a request, the server may
omit live properties whose values are expensive to calculate.

In response to a PROPFIND request for all properties, HCP may omit some
standard WebDAV properties but always includes all properties defined in
the HCP XML namespace. For more information on these properties, see
“HCP-specific metadata properties for WebDAV” on page 155.

Storage properties

HCP supports RFC 4331, which defines two additional live properties in the
DAV: HTTP URL namespace. These properties, which are described in the
table below, provide storage statistics for the namespace.

Property Description

quota-available-bytes The amount of storage space, in bytes, currently available
for storing additional objects
154 Chapter 5: WebDAV

Using the Default Namespace

WebDAV properties
HCP-specific metadata properties for WebDAV

HCP recognizes all the live properties defined in the DAV: namespace.
Additionally, it provides its own XML namespace with live properties that
allow you to store and retrieve HCP system metadata. This namespace is
specified as:

http://www.hds.com/hcap/webdav/

As with the standard WebDAV properties, you use the PROPPATCH and
PROPFIND methods to change and retrieve the values of the HCP-specific
properties.

Metadata properties for objects

The table below describes the metadata properties HCP provides for
objects. For more information on the possible values for these properties,
see Chapter 3, “Object properties,” on page 33.

quota-used-bytes The amount of storage space, in bytes, currently occupied
by all objects in the namespace

 (Continued)

Property Description

Note: In a WebDAV PROPPATCH or PROPFIND request, the HCP XML
namespace must be specified exactly as shown above. The namespace
name must include hcap, not hcp, in the URL.

Metadata Property Description

access-time The value of the POSIX atime attribute for the object.

You can retrieve, but not change, the value of this property.

change-time The value of the POSIX ctime attribute for the object.

You can retrieve, but not change, the value of this property.

creation-time The date and time the object was stored in the namespace.

You can retrieve, but not change, the value of this property.

dpl The object DPL.

You can retrieve, but not change, the value of this property.
Chapter 5: WebDAV 155

Using the Default Namespace

WebDAV properties
gid The ID of the owning group for the object.

To change the owning group, specify a valid group ID.

hash-scheme The name of the cryptographic hash algorithm used to
calculate the cryptographic hash value for the object.

You can retrieve, but not change, the value of this property.

hash-value The cryptographic hash value for the object.

You can retrieve, but not change, the value of this property.

index The index setting for the object, either true (index) or false
(don’t index).

To change this value, specify true or false.

mode The object permissions as an octal value.

To change the permissions, specify a valid octal value for
permissions.

replication An indication of whether the object has been replicated,
either true (replicated) or false (not replicated).

You can retrieve, but not change, the value of this property.

replication-collision An indication of whether the object is flagged as a
replication collision, either true (flagged) or false (not
flagged).

retention-value 0, -1, -2, or seconds since January 1, 1970 at 00:00:00.

To change this value, you can specify any of these values,
any of the valid values for the retention-string property, or
an offset. For information on offsets, see “Specifying an
offset” on page 49.

retention-string Deletion Allowed, Deletion Prohibited, Initial Unspecified,
or a date and time in this format:

yyyy-MM-ddThh:mm:ssZ

Z represents the offset from UTC and is specified as:

(+|-)hhmm

To change this value, specify any of these values, any of the
valid values for the retention-value property, or an offset.

 (Continued)

Metadata Property Description
156 Chapter 5: WebDAV

Using the Default Namespace

WebDAV properties
Metadata properties for directories

The table below describes the metadata properties HCP provides for
directories. For more information on the possible values for these
properties, see Chapter 3, “Object properties,” on page 33.

retention-class The name of the retention class for the object (such as
Hlth-107).

To change this value, specify a valid retention class name.

retention-hold The hold status for the object, either true (on hold) or false
(not on hold).

To change this value, specify Hold or Unhold.

shred The shred setting for the object, either true (shred) or false
(don’t shred).

To change this value, specify true or false.

uid The user ID of the object owner.

To change the object owner, specify a valid user ID.

update-time The value of the POSIX mtime attribute for the object.

You can retrieve, but not change, the value of this property.

 (Continued)

Metadata Property Description

Metadata Property Description

access-time The value of the POSIX atime attribute for the directory.

You can retrieve, but not change, the value of this property.

change-time The value of the POSIX ctime attribute for the directory.

You can retrieve, but not change, the value of this property.

creation-time The date and time the directory was created in the
namespace.

You can retrieve, but not change, the value of this property.

gid The ID of the owning group for the directory.

To change the owning group, specify a valid group ID.
Chapter 5: WebDAV 157

Using the Default Namespace

WebDAV properties
PROPPATCH example

Here’s a sample WebDAV PROPPATCH request that changes the retention
setting for the object named wind.jpg in the images directory.

Request with cadaver command line

propset images/wind.jpg retention-string 2015-09-30T17:00:00-0400

Request XML body

<?xml version="1.0" encoding="utf-8" ?>
<ns0:propertyupdate xmlns:ns0="DAV:">

<ns0:set>
<ns0:prop>

<ns1:retention-string xmlns:ns1="http://www.hds.com/hcap/webdav/">

index The index setting for the directory, either true (index) or
false (don’t index).

To change this value, specify true or false.

mode The directory permissions as an octal value.

To change the permissions, specify a valid octal value for
permissions.

retention Any valid directory retention setting.

To change this value, specify any valid retention setting for
a directory. For these settings, see “Changing retention
settings” on page 45.

retention-class The name of the retention class for the directory (such as
Hlth-107).

To change this value, specify a valid retention class name.

shred The shred setting for the directory, either true (shred) or
false (don’t shred).

To change this value, specify true or false.

uid The user ID of the directory owner.

To change the directory owner, specify a valid user ID.

update-time The value of the POSIX mtime attribute for the directory.

You can retrieve, but not change, the value of this property.

 (Continued)

Metadata Property Description
158 Chapter 5: WebDAV

Using the Default Namespace

WebDAV properties
2015-09-30T17:00:00-0400
</ns1:retention-string>

</ns0:prop>
</ns0:set>

</ns0:propertyupdate>

Response XML body

<?xml version="1.0" encoding="utf-8"?>
<D:multistatus xmlns:D="DAV:"
xmlns:HCAP="http://www.hds.com/hcap/webdav/"
xmlns="http://www.hds.com/hcap/webdav/">

<D:response>
<D:href>http://default.default.hcp.example.com/webdav/fcfs_data/images/

wind.jpg
</D:href>
<D:propstat>

<D:prop>
<ns1:retention-string
xmlns:ns1="http://www.hds.com/hcap/webdav/"/>

</D:prop>
<D:status>HTTP/1.1 200 OK</D:status>

</D:propstat>
</D:response>

</D:multistatus>

PROPFIND example

Here’s a sample WebDAV PROPFIND request that returns the UID for the
object named wind.jpg in the images directory.

Request with cadaver command line

propget images/wind.jpg uid

Request XML body

<?xml version="1.0" encoding="utf-8" ?>
<ns0:propfind xmlns:ns0="DAV:">

<ns0:prop>
<ns1:uid xmlns:ns1="http://www.hds.com/hcap/webdav/" />

</ns0:prop>
</ns0:propfind>
Chapter 5: WebDAV 159

Using the Default Namespace

WebDAV properties
Response XML body

<?xml version="1.0" encoding="utf-8"?>
<D:multistatus xmlns:D="DAV:"
xmlns:HCAP="http://www.hds.com/hcap/webdav/">

<D:response>
<D:href>http://default.default.hcp.example.com/webdav/fcfs_data/images/

wind.jpg
</D:href>
<D:propstat>

<D:prop>
<HCAP:uid>0</HCAP:uid>

</D:prop>
<D:status>HTTP/1.1 200 OK</D:status>

</D:propstat>
</D:response>

</D:multistatus>

Using the custom-metadata.xml file to store dead properties

HCP can be configured to store WebDAV dead properties in the
custom-metadata.xml file for an object. When HCP is configured this way,
you use the PROPPATCH and PROPFIND methods to store and retrieve dead
properties just as you do for live properties.

This is the only way HCP can store dead properties. When the namespace
is not configured to use custom-metadata.xml files for dead properties and
you try to store dead properties, HCP returns an error (return code 404).

To have the namespace configured to store dead properties in the
custom-metadata.xml file, see your namespace administrator.

Using the PROPPATCH method, you can change individual dead properties
in the custom-metadata.xml file. You do not need to replace the entire file as
you do when you use the file for custom metadata (as described in
“Custom metadata” on page 60).

Note: HCP lets you set dead properties on directories. It uses an internal
mechanism to store these properties.
160 Chapter 5: WebDAV

Using the Default Namespace

WebDAV usage considerations
You can use the custom-metadata.xml file for an object to store either
custom metadata or dead properties, but not both:

• If, after using the custom-metadata.xml file to store custom metadata,
you try to store dead properties, HCP returns a 409 (Conflict) error. In
this case, you must delete the existing custom-metadata.xml file before
you can store dead properties for the object.

• If, after storing dead properties, you replace the custom-metadata.xml
file with a new custom-metadata.xml file, the dead properties you stored
are lost.

WebDAV usage considerations

The following sections present considerations that affect the use of the
WebDAV protocol for namespace access. For additional considerations that
are not specific to the WebDAV protocol, see Chapter 9, “General usage
considerations,” on page 191.

Basic authentication with WebDAV

The namespace can be configured to require basic authentication for
WebDAV access. If basic authentication is enabled, you’re prompted for a
username and password when you access the namespace through
WebDAV. For the username and password to use, see your namespace
administrator.

WebDAV permission checking

The namespace configuration specifies the level of permission checking on
WebDAV requests:

• No permission checking — HCP doesn’t check permissions on any
operations.

• Permission checking only on the first object — If you’re adding an
object to the default namespace, HCP checks the permissions only for
the target directory. If you’re performing an operation on an existing
object, HCP checks the permissions only for that object.

• Strict permission checking — For all operations, HCP checks
permissions for the target object as well as for all directories in the path
to that object.
Chapter 5: WebDAV 161

Using the Default Namespace

WebDAV usage considerations
Strict permission checking enhances the security of stored data but results
in slower performance. With no permission checking, performance is
unaffected, but the security benefit is lost.

To learn the level of WebDAV permission checking in effect, see your
namespace administrator.

WebDAV persistent connections

HCP supports persistent connections with WebDAV. Following a request for
an operation, HCP keeps the connection open for 60 seconds so a
subsequent request can use the same connection.

Persistent connections enhance performance because they avoid the
overhead of opening and closing multiple connections. In conjunction with
persistent connections, using multiple threads so that operations can run
concurrently provides still better performance.

If the persistent connection timeout period is too short, tell your
namespace administrator.

WebDAV client timeouts with long-running requests

Some WebDAV operations can take a long time to complete. For example,
a GET request on a very large directory can take quite a while to complete.

During such an operation, HCP does not communicate back to the client.
As a result, the connection may time out on the client.

If an operation may take a long time, you should adjust the connection
timeout setting on the client before making the request.

Note: With persistent connections, if a single node has more than 254
concurrent open connections, those above the first 254 may have to wait
as long as ten minutes to be serviced. This includes connections where
the request explicitly targeted the node, as well as connections where the
HCP DNS name resolved to the target node.

To avoid this issue, either don’t use persistent connections or ensure that
no more than 254 threads are working against a single node at any given
time.
162 Chapter 5: WebDAV

Using the Default Namespace

WebDAV usage considerations
WebDAV object locking

To accommodate WebDAV clients that require locking functionality, HCP
supports the LOCK and UNLOCK methods. However, a LOCK request locks
the specified object only on the target node. As a result, locking an object
does not prevent other nodes from modifying it.

Storing zero-sized files with WebDAV

When you store a zero-sized file with WebDAV, the resulting object has no
data. Because WebDAV causes a flush and a close even when no data is
present, this object is WORM and is treated like any other object in the
namespace.

Using WebDAV with objects open for write

These considerations apply to using WebDAV to access objects that are
open for write:

• If you try to write to the object, HCP returns a 409 (Conflict) error.

• If try to retrieve, delete, or check the existence of an object that’s open
for write, HCP returns a 404 (Not Found) error code and does not
perform the operation.

Failed WebDAV write operations

A WebDAV write operation is considered to have failed if either of these is
true:

• The target node failed while the object was open for write.

• The TCP connection broke (for example, due to a front-end network
failure or the abnormal termination of the client application) while the
object was open for write.

Also, in some circumstances, a write operation is considered to have failed
if another node or other hardware failed while the object was open for
write.

Note: Depending on the timing, the delete request may result in a
busy error. In that case, wait one or two seconds and then try the
request again.
Chapter 5: WebDAV 163

Using the Default Namespace

WebDAV return codes
If a write fails, HCP does not create a new object.

Multithreading with WebDAV

With WebDAV, only one client can write to a given object at one time. A
multithreaded client can write to multiple objects at the same time but
cannot have multiple threads writing to the same object.

Multiple clients can use WebDAV to read the same object concurrently.
Similarly, a multithreaded client can use multiple threads to read a single
object. However, because the reads can occur out of order, you generally
get better performance by using one thread per object.

HCP has a limit of 255 concurrent WebDAV connections per node, with
another 20 queued.

WebDAV return codes

The table below describes the possible return codes for WebDAV requests
against the default namespace.

Tip: If a write operations fails, retry the request.

Note: HTTP and WebDAV share the same connection pool.

Code Meaning Description

200 OK GET, HEAD, PROPPATCH, or LOCK: HCP successfully
completed the request.

201 Created PUT, MKCOL, COPY, or MOVE: HCP successfully
completed the request. (For COPY or MOVE, no object
existed at the target location.)

204 No Content COPY, MOVE, or DELETE: HCP successfully completed the
request. (For COPY or MOVE, a deletable object existed
at the target location.)

GET, HEAD, or DELETE of custom metadata: The specified
object exists but does not have custom metadata.

206 Partial Content GET: HCP successfully retrieved the data in the byte
range specified in the request.
164 Chapter 5: WebDAV

Using the Default Namespace

WebDAV return codes
207 Multi-Status PROPPATCH, PROPFIND, or DELETE for a directory: An
operation generated multiple return codes. The response
body contains an XML document that shows the return
codes and the names of the objects to which they apply.

400 Bad Request All methods: The request is not well-formed. Correct the
request and try again.

PROPPATCH or PROPFIND: The request XML is invalid.

PUT: For a request to add custom metadata, the
namespace is configured with custom metadata XML
checking enabled, and the request includes custom
metadata that is not well-formed XML.

403 Forbidden For all methods, one of:

• The namespace does not exist.

• The WebDAV protocol is not enabled for the default
namespace.

• The URL specifies https and the namespace
configuration does not support SSL.

• You don’t have permission to perform the requested
operation.

MKDIR: You cannot create a directory in the specified
location.

PROPPATCH: The requested change is not allowed.

COPY or MOVE: The specified source and destination
locations are the same.

DELETE: The specified object is under retention.

404 Not Found GET, HEAD, PROPPATCH, PROPFIND, COPY, MOVE,
DELETE, LOCK, or UNLOCK: HCP could not find the
object, metafile, or directory specified in the request.

405 Method Not
Allowed

MKCOL: HCP could not create the directory because it
already exists.

DELETE: HCP could not delete the specified object or
custom-metadata.xml file because it is currently being
written to the namespace.

 (Continued)

Code Meaning Description
Chapter 5: WebDAV 165

Using the Default Namespace

WebDAV return codes
409 Conflict PUT: HCP could not store the object because it already
exists.

PUT, MKCOL, COPY, or MOVE: One or more directories in
the target path do not exist.

PROPPATCH: HCP could not store dead properties in the
specified custom-metadata.xml file because it already
contains custom metadata.

412 Precondition
Failed

COPY or MOVE: The operation failed because either:

• HCP could not correctly copy or move the object
metadata

• The target object already exists and could not be
deleted

LOCK: HCP could not lock the specified object.

414 Request URI Too
Long

All methods: The portion of the URL following fcfs_data
or fcfs_metadata is longer than 4,095 bytes.

416 Requested
Range Not
Satisfiable

GET: For a byte-range request, either:

• The specified start position is greater than the size of
the requested data.

• The size of the specified range is zero.

423 Locked PUT, PROPPATCH, COPY, MOVE, DELETE, or LOCK: HCP
could not perform the requested operation because the
target object is locked.

500 Internal Server
Error

All methods: An internal error occurred. Try the request
again, gradually increasing the delay between each
successive attempt.

If this happens repeatedly, please contact your
namespace administrator.

503 Service
Unavailable

One of:

• HCP is temporarily unable to handle the request,
probably to due to system overload, maintenance, or
upgrade.

• HCP tried to read the object from another system in
the replication topology but could not.

In either case, try the request again, gradually increasing
the delay between each successive attempt.

 (Continued)

Code Meaning Description
166 Chapter 5: WebDAV

Using the Default Namespace

WebDAV return codes
507 Insufficient
Storage

PUT: Not enough space is available to store the object.
Try the request again after objects are deleted from the
repository or the system storage capacity is increased.

PROPPATCH, MKCOL, or COPY: Not enough space is
available to complete the request. Try the request again
after objects are deleted from the repository or the
system storage capacity is increased.

 (Continued)

Code Meaning Description
Chapter 5: WebDAV 167

Using the Default Namespace

6

CIFS

CIFS is one of the industry-standard protocols HCP supports for
namespace access. To access the namespace through CIFS, you can write
applications that use any standard CIFS client library, or you can use the
Windows GUI or a Command Prompt window to access the namespace
directly.

Using the CIFS protocol, you can store, view, retrieve, and delete objects.
You can also change certain system metadata for existing objects.

For you to access the namespace through CIFS, this protocol must be
enabled in the namespace configuration. If you cannot access the
namespace in this way, see your namespace administrator.

This chapter explains how to use CIFS for namespace access.
Chapter 6: CIFS 167

Using the Default Namespace

Namespace access with CIFS
Namespace access with CIFS

You access a namespace through CIFS by mapping a directory in the
default namespace to a network drive on a CIFS client. For both data and
metadata, you can map the root directory (fcfs_data or fcfs_metadata) or
any directory or metadirectory under it. Additionally, you can have
multiple directories mapped at the same time.

Once mapped, the namespace appears to be part of the local file system,
and you can perform any of the operations HCP supports for CIFS. On a
Windows client, this includes dragging and dropping files and directories to
the namespace and, likewise, objects and directories from the namespace.

When mapping the namespace, you can use either the DNS name of the
HCP system or the IP address of a node in the HCP system. Here’s the
format for each method:

\\cifs.hcp-domain-name\(fcfs_data|fcfs_metadata)[\directory-path]

\\node-ip-address\(fcfs_data|fcfs_metadata)[\directory-path]

Examples:

\\cifs.hcp.example.com\fcfs_data

\\192.168.210.16\fcfs_data\images

\\cifs.hcp.example.com\fcfs_metadata

For information on the relative advantages of DNS names and IP
addresses, see “DNS name and IP address considerations” on page 194.

CIFS examples

The following sections show examples of using CIFS to access the default
namespace. Each example shows both a Windows command and Python
code that implements the same command.

These examples assume that the fcfs_data directory is mapped to the X:
drive and the fcfs_metadata metadirectory is mapped to the Y: drive.

Note: When working with objects and metafiles at the same time, you
need at least two separate shares of the namespace — one to a directory
and one to a metadirectory.
168 Chapter 6: CIFS

Using the Default Namespace

CIFS examples
CIFS example 1: Storing an object

This example stores an object named wind.jpg in the existing images
directory by copying a file of the same name from the local file system.

Windows command

copy wind.jpg x:\images

Python code

import shutil
shutil.copy("wind.jpg", "x:\\images\\wind.jpg")

CIFS example 2: Changing a retention setting

This example extends the retention period for the wind.jpg object by one
year. If this object is still open due to lazy close, changing the retention
setting closes it.

For information on lazy close, see “CIFS lazy close” on page 172.

Windows command

echo +1y > y:\images\wind.jpg\retention.txt

Python code

retention_value = "+1y"
retention_fh = file("y:\\images\\wind.jpg\\retention.txt")
try:
retention_fh.write(retention_value)

finally:
retention_fh.close()

CIFS example 3: Retrieving an object

This example retrieves the object named wind.jpg from the namespace and
stores the resulting file with the same name in the existing RetrievedFiles
directory.

Windows command

copy x:\images\wind.jpg RetrievedFiles
Chapter 6: CIFS 169

Using the Default Namespace

CIFS usage considerations
Python code

import shutil
shutil.copy("x:\\images\\wind.jpg", "RetrievedFiles\\wind.jpg")

CIFS example 4: Retrieving deletable objects

This example retrieves all objects that can be deleted from the images
directory and lists them in the HCP\DeletableObjects directory. These are
the objects listed in the expired metadirectory. They are retrieved without
any data.

For more information on the expired metadirectory, see “Metadirectories
for directories” on page 18.

Windows command

copy y:\images\.directory-metadata\info\expired HCP\DeletableObjects

Python code

import shutil
import glob
expiredFileDir = "y:\\images\\.directory-metadata\\info\\expired\\"
for expiredFile in glob.glob(expiredFileDir + "*"):
shutil.copy(expiredFile, "HCP\\DeletableObjects")

CIFS usage considerations

The following sections present considerations that affect the use of the
CIFS protocol for namespace access. For additional considerations that are
not specific to the CIFS protocol, see Chapter 9, “General usage
considerations,” on page 191.

CIFS case sensitivity

The Windows operating system is case preserving but not case sensitive.
The HCP CIFS implementation, by default, is both case preserving and case
sensitive. One result of this discrepancy is that Windows applications that
don’t observe differences in case may not be able to access objects by
name.
170 Chapter 6: CIFS

Using the Default Namespace

CIFS usage considerations
For example, suppose a Windows application adds a file named File.txt to
the namespace by using the CIFS protocol. CIFS preserves case, so the
namespace then contains an object named File.txt. Now suppose the
application tries to retrieve that object using the name file.txt. CIFS is
case sensitive, so it passes the request to HCP with only the name
file.txt. It doesn’t include any case variations on the name, such as
File.TXT or FILE.txt. As a result, HCP cannot find the object.

You can ask your namespace administrator to make the CIFS
implementation case insensitive. However, this change has two
consequences that affect object reads:

• It slows performance.

• If the namespace contains multiple objects with names that differ only
in case, HCP may return the wrong object.

CIFS permission translations

When you view an object on a Windows client, CIFS translates the POSIX
permission settings used in the namespace into settings Windows
understands. The table below shows how CIFS maps POSIX permissions to
Windows permissions.

Permissions in the namespace Permissions in Windows

r-- Read

-w- Write

--x None

rw- Read
Write

r-x Read
Read & Execute

-wx None

rwx Read
Write
Read & Execute
Modify
Full Control

--- None
Chapter 6: CIFS 171

Using the Default Namespace

CIFS usage considerations
Changing directory permissions when using Active Directory

When using Active Directory for user authentication with CIFS, you cannot
use Windows properties to change permissions for a directory. Although
the operation appears to work, no changes are actually made.

Creating an empty directory with atime synchronization in effect

When you use Windows Explorer to create a new directory, Windows
automatically names it New Folder. This is also true for directories you
create in the namespace.

Normally, you can rename an empty directory in the namespace. However,
if atime synchronization is in effect, you cannot do this. As a result, the
name of the new directory remains New Folder.

For more information on atime synchronization, see “atime synchronization
with retention” on page 51.

CIFS lazy close

When writing a file to the namespace, CIFS can cause a flush at any time.
After each flush or write, HCP waits a short amount of time for the next
one. HCP considers the resulting object to be complete and closes it if no
write occurs within that time. This event is called lazy close.

If you set retention on an object during the lazy close period, HCP closes
the object immediately. The object becomes WORM, and retention applies,
even if the object contains no data. However, if the directory that contains
the object and its corresponding metadirectory are shared on two different
nodes in the HCP system, setting retention during the lazy close period
does not close the object.

Storing zero-sized files with CIFS

When you store a zero-sized file with CIFS, the resulting object has no
data. After lazy close occurs, the object becomes WORM and is treated
like any other object in the namespace.
172 Chapter 6: CIFS

Using the Default Namespace

CIFS usage considerations
Out-of-order writes with CIFS

CIFS can write the data for an object out of order. If HCP receives an
out-of-order write for a large file (200,000 bytes or larger), it discards the
cryptographic hash value it already calculated. The object then has no
hash value until one of these occurs:

• HCP returns to the object at a later time and calculates the hash value
for it.

• A user or application opens or downloads the hash.txt metafile for the
object, which causes HCP to calculate the hash value. However,
because HCP calculates this value asynchronously, the value may not
be immediately available. This is particularly true for large objects.

Using CIFS with Objects open for write

These considerations apply to objects that are open for write through any
protocol:

• While an object is open for write through one IP address, you cannot
open it for write through any other IP address.

• You can read an object that is open for write from any IP address, even
though the object data may be incomplete. A read against the node
hosting the write may return more data than a read against any other
node.

• While an object is open for write, you cannot delete it.

• While an object that’s open for write has no data:

– It is not WORM

– It may or may not have a cryptographic hash value

– It is not subject to retention

– It cannot have custom metadata

– It is not indexed

Note: Depending on the timing, the delete request may result in a
busy error. In that case, wait one or two seconds and then try the
request again.
Chapter 6: CIFS 173

Using the Default Namespace

CIFS usage considerations
Failed CIFS write operations

A CIFS write operation is considered to have failed if the target node failed
while the object was open for write. Also, in some circumstances, a write
operation is considered to have failed if another node or other hardware
failed while the object was open for write.

A CIFS write operation is not considered to have failed if the TCP
connection broke. This is because HCP doesn’t see the failure. In this
case, lazy close applies, and the object is considered complete.

Objects left by failed CIFS write operations:

• May have none, some, or all of their data

• If partially written, may or may not have a cryptographic hash value

• If the failure was on the HCP side, remain open and:

– Are not WORM

– Cannot have custom metadata

– Are not indexed

– Are not replicated

• If the failure was on the client side, are WORM after the lazy close

If a write operation fails, delete the object and try the write operation
again.

Temporary files created by Windows clients

During certain operations, Windows clients may create temporary files. In
the namespace, these files correspond to successfully created objects.

Note: If the object is WORM, any retention setting applies. In this case,
you may not be able to delete the object.
174 Chapter 6: CIFS

Using the Default Namespace

CIFS usage considerations
As with any other new object stored through the CIFS protocol, the
retention period for such an object is determined by its parent directory. If
the object ends up being under retention, it remains in the namespace
after the operation completes and cannot be deleted until its retention
period expires.

Multithreading with CIFS

With CIFS, multiple concurrent threads can write to the same object, but
only if they are working against the same node. Multiple concurrent
threads can read the same object on the same or different nodes.

HCP doesn’t limit the number of concurrent CIFS threads per node but
does limit the total number of outstanding requests using all protocols to
500 per node.

Tip: When writing applications, be sure to take into account that objects
created for temporary files may be closed and made WORM unexpectedly.
Once this happens, the application cannot reopen the object.

Note: With a single share of the namespace, concurrent threads are
always working against the same node.

Note: CIFS and NFS share the same thread pool.
Chapter 6: CIFS 175

Using the Default Namespace

CIFS return codes
CIFS return codes

The table below describes the possible return codes for CIFS requests
against the namespace.

Code Description

NT_STATUS_ACCESS_DENIED The requested operation is not allowed. Reasons
for this return code include attempts to:

• Rename an object

• Rename a directory that contains one or more
objects

• Overwrite an object

• Modify the content of an object

• Delete an object that’s under retention

• Delete a directory that contains one or more
objects

• Add a file (other than a file containing custom
metadata), directory, or symbolic link
anywhere in the metadata structure

• Delete a metafile or metadirectory

• Create a hard link

NT_STATUS_IO_DEVICE_ERROR The requested operation would shorten the
retention period of the specified object, which is
not allowed.

NT_STATUS_RETRY HCP tried to read the object from another system
in the replication topology but could not.
176 Chapter 6: CIFS

Using the Default Namespace

7

NFS

NFS is one of the industry-standard protocols HCP supports for namespace
access. To access the namespace through NFS, you can write applications
that use any standard NFS client library, or you can use the command line
in an NFS client to access the namespace directly.

Using the NFS protocol, you can store, view, retrieve, and delete objects.
You can also change certain system metadata for existing objects.

For you to access the namespace through NFS, this protocol must be
enabled in the namespace configuration. If you cannot access the
namespace in this way, see your namespace administrator.

This chapter explains how to use NFS for namespace access.
Chapter 7: NFS 177

Using the Default Namespace

Namespace access with NFS
Namespace access with NFS

You access the namespace through NFS by mounting a namespace
directory on an NFS client. For both data and metadata, you can mount
the root directory (fcfs_data or fcfs_metadata) or any directory or
metadirectory under it. Additionally, you can have multiple directories
mounted at the same time.

Once mounted, the namespace appears to be part of the local file system,
and you can perform any of the operations HCP supports for NFS.

When mounting the namespace, you can use either the DNS name of the
HCP system or the IP address of a node in the system. Here’s the format
for each method:

mount -o tcp,vers=3,timeo=600,hard,intr
-t nfs nfs.hcp-domain-name:/(fcfs_data|fcfs_metadata)
[/directory-path] mount-point-path

mount -o tcp,vers=3,timeo=600,hard,intr
-t nfs node-ip-address:/(fcfs_data|fcfs_metadata)
[/directory-path] mount-point-path

The parameters shown are recommended but not required.

Examples:

mount -o tcp,vers=3,timeo=600,hard,intr -t nfs
nfs.hcp.example.com:/fcfs_data datamount

mount -o tcp,vers=3,timeo=600,hard,intr -t nfs
192.168.210.16:/fcfs_data/images HCP-images

mount -o tcp,vers=3,timeo=600,hard,intr -t nfs
nfs.hcp.example.com:/fcfs_metadata metadatamount

For information on the relative advantages of DNS names and IP
addresses, see “DNS name and IP address considerations” on page 194.

Note: When mounting the namespace, do not specify the rsize and wsize
options. Omitting these options causes HCP to use the optimal values
based on system configuration.

Note: When working with objects and metafiles at the same time, you
need at least two separate mounts of the namespace — one to a directory
and one to a metadirectory.
178 Chapter 7: NFS

Using the Default Namespace

NFS examples
NFS examples

The following sections show examples of using NFS to access the
namespace. Each example shows both a Unix command and Python code
that implements the same command.

These examples assume that the fcfs_data directory is mounted at
datamount and the fcfs_metadata metadirectory is mounted at
metadatamount.

NFS example 1: Adding a file

This example stores an object named wind.jpg in the existing images
directory by copying a file of the same name from the local file system.

Unix command

cp wind.jpg /datamount/images/wind.jpg

Python code

import shutil
shutil.copy("wind.jpg", "/datamount/images/wind.jpg")

NFS example 2: Changing a retention setting

This example extends the retention period for the wind.jpg object by one
year. If this object is still open due to lazy close, changing the retention
setting closes it. For information on lazy close, see “NFS lazy close” on
page 181.

Unix command

echo +1y > /metadatamount/images/wind.jpg/retention.txt

Python code

retention_value = "+1y"
retention_fh = file("/datamount/images/wind.jpg/retention.txt")
try:
retention_fh.write(retention_value)

finally:
retention_fh.close()
Chapter 7: NFS 179

Using the Default Namespace

NFS examples
NFS example 3: Using atime to set retention

This example changes the value of the POSIX atime attribute for the
wind.jpg object. If the namespace is configured to synchronize atime
values with retention settings and the object has a retention setting that
specifies a date or time in the future, this also changes the retention
setting for the object.

For more information on atime synchronization, see “atime synchronization
with retention” on page 51.

Unix command

touch -a -t 201505171200 /datamount/images/wind.jpg

Python code

import os
mTime = os.path.getmtime("/datamount/images/wind.jpg")
aTime = 1431878400 #12:00 May 17th 2015
os.utime("/datamount/images/wind.jpg", (aTime, mTime))

NFS example 4: Creating a symbolic link in the namespace

This example creates a symbolic link named big_dipper that references an
object named ursa_major.jpg.

Unix command

ln -s /datamount/images/constellations/ursa_major.jpg/
datamount/constellations/common_names/big_dipper

Python code

import os
os.symlink("/datamount/images/constellations/ursa_major.jpg",
"/datamount/constellations/common_names/big_dipper"

NFS example 5: Retrieving an object

This example retrieves the object named wind.jpg from the namespace and
stores the resulting file in the retrieved_files directory.

Unix command

cp /datamount/images/wind.jpg retrieved_files/wind.jpg
180 Chapter 7: NFS

Using the Default Namespace

NFS usage considerations
Python code

import shutil
shutil.copy("/datamount/images/wind.jpg", "retrieved_files/ \
wind.jpg")

NFS example 6: Retrieving deletable objects

This example retrieves all objects that can be deleted from the images
directory and lists them in the hcp/deletable_objects directory. These are
the objects listed in the expired metadirectory. They are retrieved without
any data.

For more information on the expired metadirectory, see “Metadirectories
for directories” on page 18.

Unix command

cp metadatamount/images/.directory-metadata/info/expired/*
hcp/deletable_objects

Python code

import shutil
import glob
expiredFileDir = "/metadatamount/images/.directory-metadata/info/
expired/"

for expiredFile in glob.glob(expiredFileDir + "*"):
shutil.copy(expiredFile, "hcp/deletable_objects")

NFS usage considerations

The following sections present considerations that affect the use of the NFS
protocol for namespace access. For additional considerations that are not
specific to the NFS protocol, see Chapter 9, “General usage
considerations,” on page 191.

NFS lazy close

When writing a file to the namespace, NFS can cause a flush at any time
and never issues a close. After each flush or write, HCP waits a short
amount of time for the next one. If no write occurs within that time, HCP
considers the resulting object to be complete and automatically closes it.
This event is called lazy close.
Chapter 7: NFS 181

Using the Default Namespace

Using NFS with objects open for write
If you set retention on an object during the lazy close period, HCP closes
the object immediately. The object becomes WORM, and retention applies,
even if the object contains no data. However, if the directory that contains
the object and its corresponding metadirectory are mounted on two
different nodes in the HCP system, setting retention during the lazy close
period does not close the object.

Storing zero-sized files with NFS

When you store a zero-sized file with NFS, the resulting object has no data.
After lazy close occurs, the object becomes WORM and is treated like any
other object in the namespace.

Out-of-order writes with NFS

NFS can write the data for an object out of order. If HCP receives an
out-of-order write for a large file (200,000 bytes or larger), it discards the
hash value. The object then has no hash value until either of these occurs:

• HCP returns to the object at a later time and calculates the hash value
for it.

• A user or application opens or downloads the hash.txt metafile for the
object, which causes HCP to calculate the hash value. However,
because HCP calculates this value asynchronously, the value may not
be immediately available. This is particularly true for large objects.

Using NFS with objects open for write

These considerations apply to objects that are open for write through any
protocol:

• While an object is open for write through one IP address, you cannot
open it for write through any other IP address.

• You can read an object that is open for write from any IP address, even
though the object data may be incomplete. A read against the node
hosting the write may return more data than a read against any other
node.
182 Chapter 7: NFS

Using the Default Namespace

Using NFS with objects open for write
• While an object is open for write, you cannot delete it.

• While an object that’s open for write has no data:

– It is not WORM

– It may or may not have a cryptographic hash value

– It is not subject to retention

– It cannot have custom metadata

– It is not indexed

– It is not replicated

Failed NFS write operations

An NFS write operation is considered to have failed if the target node failed
while the object was open for write. Also, in some circumstances, a write
operation is considered to have failed if another node or other hardware
failed while the object was open for write.

An NFS write operation is not considered to have failed if the TCP
connection broke. This is because HCP doesn’t see the failure. In this
case, lazy close applies, and the object is considered complete.

Objects left by failed NFS write operations:

• May have none, some, or all of their data

• If partially written, may or may not have a cryptographic hash value

• If the failure was on the HCP side, remain open and:

– Are not WORM

– Cannot have custom metadata

– Are not indexed

Note: Depending on the timing, the delete request may result in a
busy error. In that case, wait one or two seconds and then try the
request again.
Chapter 7: NFS 183

Using the Default Namespace

Using NFS with objects open for write
– Are not replicated

• If the failure was on the client side, are WORM after the lazy close

If a write operation fails, delete the object and try the write operation
again.

NFS reads of large objects

While HCP is reading very large objects (thousands of megabytes or more)
through NFS, the system performance decreases.

Walking large directory trees

HCP occasionally reuses inode numbers. Normally, this has no impact.
However, it can affect programs that walk the directory tree, like the Unix
du command. If you run such a program against a very large directory
tree, it may not go down certain subdirectory paths.

One way to prevent such problems is to work on directory segments,
instead of the entire directory tree. For example, when you use the du
command you can run the command against smaller segments of the
directory hierarchy; then add the returned values together to get the total.

NFS delete operations

While an object is open for write through NFS on a given node, it cannot be
deleted through NFS on other nodes.

NFS mounts on a failed node

If an HCP node fails, NFS mounts that target the failed node lose their
connections to the namespace. To recover from a node failure, unmount
the namespace at the current mount point. Then do one of these:

• Mount the namespace on a different node. You can do this by
specifying either the DNS name of the HCP system or a specific node IP
address in the mount command. If you specify a DNS name, HCP
automatically selects a node from among the healthy ones.

Note: If the object is WORM, any inherited retention setting applies. In
this case, you may not be able to delete the object.
184 Chapter 7: NFS

Using the Default Namespace

Using NFS with objects open for write
• When the failed node reboots, remount the namespace on the same
node.

Multithreading with NFS

With NFS, multiple concurrent threads can write to the same object, but
only if they are working against the same node. Multiple concurrent
threads can read the same object on the same or different nodes.

HCP doesn’t limit the number of concurrent NFS threads per node but does
limit the total number of outstanding requests using all protocols to 500
per node.

Tip: You can use the NFS automounter on the client to automatically
remount the namespace. Be sure to use the DNS name of the HCP
system when you do this.

Note: With a single mount point, concurrent threads are always working
against the same node.

Note: CIFS and NFS share the same thread pool.
Chapter 7: NFS 185

Using the Default Namespace

NFS return codes
NFS return codes

The table below describes the possible return codes for NFS requests
against the namespace.

Code Description

EACCES The requested operation is not allowed. Reasons
for this return code include attempts to:

• Rename an object

• Rename a directory that contains one or more
objects

• Overwrite an object

• Modify the content of an object

• Add a file (other than a file containing custom
metadata), directory, or symbolic link
anywhere in the metadata structure

• Delete a metafile or metadirectory

EAGAIN HCP tried to read the object from another system
in the replication topology but could not.

EIO The requested operation is not allowed. This code
is returned in response to attempts to:

• Shorten the retention period of an object

• Create a hard link

ENOTEMPTY For an rm request to delete a directory, the
specified directory cannot be deleted because it is
not empty.

EROFS For an rm request to delete an object, the
specified object cannot be deleted because it is
under retention.
186 Chapter 7: NFS

Using the Default Namespace

8

SMTP

SMTP is one of the industry-standard protocols HCP supports for
namespace access. This protocol is used only for storing email. Using
SMTP, you (or an application) can send individual emails to the namespace.
Your namespace administrator can also configure HCP to automatically
store emails forwarded by mail servers.

For a user or application to send an individual email to the namespace,
network connectivity must exist between the HCP system and the email
server.

All email objects stored through SMTP can be accessed immediately
through any other protocol.

For you to access the namespace through SMTP, this protocol must be
enabled in the namespace configuration. If you cannot access the
namespace in this way, see your namespace administrator.

This chapter explains how to send individual emails to the namespace and
describes the naming conventions HCP uses when storing email objects.
Chapter 8: SMTP 187

Using the Default Namespace

Storing individual emails
Storing individual emails

To send an individual email to the namespace through SMTP, you include a
namespace email address in the To, Cc, or Bcc list for the email. The email
address has either of these formats:

username@hcp-domain-name

username@[node-ip-address]

username can be any well-formed email username. In the second format,
the square brackets ([]) around the IP address are required.

Examples:

jcrocus@hcp.example.com

hr-app-017@[192.168.210.16]

For information on the relative advantages of DNS names and IP
addresses, see “DNS name and IP address considerations” on page 194.

Naming conventions for email objects

HCP handles email objects the same way it handles other objects, except
that for email stored through SMTP, HCP automatically generates directory
paths and object names. It generates the paths directly under a parent
directory that’s specified in the namespace configuration. To learn the
parent directory path, see your namespace administrator.

The namespace configuration also determines the ownership, permissions,
retention setting, shred setting, and index setting for all email objects
stored using the SMTP protocol.

Tip: For the username in the email address, use your own email
username or the name of the application sending the email.

Note: You can also store an email by first saving it and then using
another protocol, such as HTTP, to store it in the namespace.
188 Chapter 8: SMTP

Using the Default Namespace

Naming conventions for email objects
Email directory and object names
The generated path and object name for email stored using SMTP consists
of, in order:

• The email path specified in the namespace configuration, ending with a
forward slash (/):

Example: email/

• A system-generated numeric ID followed by a forward slash (/):

Example: 341/

• The date and time the email was stored, in this format, followed by a
hyphen (-):

year/month/day/hour/minute/hour-minute-second.millisecond

Example: 2013/03/02/02/47/02-47-22.186-

• An internally generated message ID followed by a hyphen:

Example: 1D34A84A-

• A repeat of the system-generated numeric ID followed by a hyphen:

Example: 341-

• A counter to ensure that all 1objects stored in the same millisecond
have unique names followed by an at sign (@):

Example: 0@

• The domain name of the sender contained in the From field of the mail
header, followed by a hyphen (-):

Example: example.com-

• The email suffix specified in the namespace configuration:

Example: mbox.eml
Chapter 8: SMTP 189

Using the Default Namespace

Naming conventions for email objects
Here’s the complete path and object name for a sample email message:

/fcfs_data/email/341/2013/03/02/02/47/02-47-22.186-1D34A84A-341-
0@example.com-mbox.eml

Email attachments
The namespace can be configured to store each email together with or
separately from its attachments, if any. When stored together, the result is
the single email object named as described above.

When stored separately, each attachment is in the same directory as the
email object. The name of the attachment object is formed from the name
of the email object (without the suffix) concatenated with a hyphen (-) and
the name of the attached file.

Here’s an example of the complete path and object names that result from
storing two attachments separately from the email with which they arrive:

• Email:

/fcfs_data/email/365/2013/03/02/17/12/17-12-29.522-4FE72776-365-
0@example.com-mbox.eml

• First attachment:

/fcfs_data/email/365/2013/03/02/17/12/17-12-29.522-4FE72776-365-
0@example.com-Wetlands Guidelines 2011-10-01.pdf

• Second attachment:

/fcfs_data/email/365/2013/03/02/17/12/17-12-29.522-4FE72776-365-
0@example.com-Anytown-Lot53645-A.jpg

Note: The message ID that the mail server generates for an email
ingested through the SMTP protocol can include one or more forward
slashes (/) or colons (:). Before storing an email, HCP replaces each such
slash or colon with a hyphen (-).
190 Chapter 8: SMTP

Using the Default Namespace

9

General usage considerations

This chapter contains usage considerations that affect the HTTP, WebDAV,
CIFS, and NFS protocols in general. For considerations that apply to
specific protocols, see the usage considerations in the individual protocol
chapters.
Chapter 9: General usage considerations 191

Using the Default Namespace

Choosing an access protocol
Choosing an access protocol

The protocol you choose to use to access the namespace depends on a
variety of factors. Some have to do with the protocols themselves, others
with the environment in which you’re working. For example, your client
operating system may dictate the choice of protocol. Or, you may need
new applications to be compatible with existing applications that already
use a given protocol.

In terms of performance, for email archiving only, SMTP is the fastest
protocol. For all other purposes, HTTP is the fastest with the lowest
amount of overhead, and WebDAV is a close second. Both of these
protocols are suitable for transferring large amounts of data. CIFS and
NFS are significantly slower than HTTP and WebDAV.

In terms of features:

• With both HTTP and WebDAV:

– Client libraries are available for many different programming
languages.

– You can store custom metadata in the namespace.

– You can use SSL security for data transfers. The namespace
configuration determines whether this feature is available.

– You can retrieve object data by byte ranges.

• With HTTP:

– Each operation can be completed in a single transaction, which
provides better performance.

– You can override metadata defaults when you add an object to the
namespace.

– HCP automatically creates any new directories in the paths for
objects you add to the namespace.

– You can identify objects by their cryptographic hash values.

• With WebDAV:

– Some operations on directories, such as, COPY, MOVE, and DELETE,
are performed in a single call.
192 Chapter 9: General usage considerations

Using the Default Namespace

Using a hosts file
– You can recursively delete a directory and its subdirectories.

• With CIFS and NFS:

– You get file-system semantics.

– Multiple concurrent threads can write to the same object.

In terms of drawbacks:

• CIFS and NFS have lazy close (see “CIFS lazy close” on page 172 or
“NFS lazy close” on page 181).

• With CIFS and NFS, performance degrades when write operations
target directories with large numbers of objects (greater than
100,000).

• With CIFS and NFS, you need to use multiple mounts of the namespace
to have HCP spread the load across the nodes in the system.

Using a hosts file

Typically, the HCP system is configured for DNS. If this is not the case, for
access to the default namespace by hostname, the client hosts file must
contain mappings from the hostname identifier for the default namespace
to one or more HCP system IP addresses.

To find out whether the HCP system is configured for DNS, see your
namespace administrator.

The location of the hosts file depends on the client operating system:

• On Windows, by default: c:\windows\system32\drivers\etc\hosts

• On Unix: /etc/hosts

• On Mac OS X: /private/etc/host

Note: For information on considerations for using hostnames and IP
addresses, see “DNS name and IP address considerations” on page 194.
Chapter 9: General usage considerations 193

Using the Default Namespace

DNS name and IP address considerations
Hostname mappings
Each line in a hosts file is a mapping of a fully qualified hostname to an IP
address. So, for example, if one of the IP addresses for the HCP system is
192.168.210.16, you would add this line to the hosts file to enable access
to the default namespace:

192.168.210.16 default.default.hcp.example.com

The following considerations apply to hosts file entries:

• Each entry must appear on a separate line.

• Multiple hostnames in a single line must be separated by white space.
With some versions of Windows, these must be single spaces.

• Each hostname can map to multiple IP addresses.

You can include comments in a hosts file either on separate lines or
following a mapping on the same line. Each comment must start with a
number sign (#). Blank lines are ignored.

For the IP addresses for the HCP system, contact your namespace
administrator.

Hostname mapping considerations
An HCP system has multiple IP addresses. You can map the hostname for
the default namespace to more than one of these IP addresses in the hosts
file. The way multiple mappings are used depends on the client platform.
For information on how your client handles multiple mappings in a hosts
file, see your client documentation.

DNS name and IP address considerations

You can access the namespace by specifying either the DNS name of the
HCP system or the IP address of a node in the system. When you specify
the DNS name, HCP selects the node for you from the currently available
nodes. HCP uses a round-robin method to select the node, which spreads
the load across the nodes.

Note: If any of the HCP system IP addresses are unavailable, timeouts
may occur when using a hosts file for system access.

Note: A node is not considered to be available for storing data if it has
lost its connection to the corporate network.
194 Chapter 9: General usage considerations

Using the Default Namespace

Directory structures
When you specify IP addresses, your application must take responsibility
for balancing the load among nodes. Also, you risk trying to connect (or
reconnect) to a node that is not available. However, in several cases using
IP addresses to connect to specific nodes can have advantages over using
DNS names.

These considerations apply to deciding which technique to use:

• If your client uses a hosts file to map HCP hostnames to IP addresses,
the client system has full responsibility for converting any DNS names
to IP addresses. Therefore, HCP cannot spread the load or prevent
attempts to connect to an unavailable node.

• If your client caches DNS information, connecting by DNS name may
result in the same node being used repeatedly.

• When you access the HCP system by DNS name, HCP ensures that
requests are distributed among nodes, but it does not ensure that the
resulting loads on the nodes are evenly balanced.

• When multiple applications access the HCP system by DNS name
concurrently, HCP is less likely to spread the load evenly across the
nodes than with a single application.

Directory structures

Because of the way HCP stores objects, the directory structures you create
and the way you store objects in them can have an impact on
performance. Here are some guidelines for creating effective directory
structures:

• Plan your directory structures before storing objects. Make sure all
namespace users are aware of these plans.

• Avoid structures that result in a single directory getting a large amount
of traffic in a short time. For example, if you ingest objects rapidly,
consider structures that do not store objects by date and time.

Tip: When accessing the namespace by DNS name, you can ping the HCP
system periodically to check whether you’re getting connections to
different nodes.
Chapter 9: General usage considerations 195

Using the Default Namespace

Non-WORM objects
• If you do store objects by date and time, consider the number of
objects ingested during a given period of time when planning the
directory structure. For example, if you ingest several hundred files per
second, you might use a directory structure such as
year/month/day/hour/minute/second. If you ingest just a few files per
second, a less fine-grained structure would be better.

• Follow these guidelines on directory depth and size:

– Try to balance the namespace directory tree width and depth.

– Do not create directory structures that are more than 20 levels
deep. Instead, create flatter directory structures.

– Avoid placing a large number of objects (greater than 100,000) in a
single directory. Instead, create multiple directories and evenly
distribute the objects among them.

Non-WORM objects

The namespace can contain objects that are not WORM:

• Objects that are open for write and have no data are not WORM.

• Empty objects written through CIFS and NFS are not WORM.

• Objects left by certain failed write operations are not WORM.

Objects that are not WORM are not subject to retention. You can delete
these objects through any protocol. You can also overwrite them through
the HTTP and WebDAV protocols without first deleting them.

Moving or renaming objects

You cannot move or rename an object in the default namespace. If a client
tries either of these operations, the operation fails.

If this occurs, many clients automatically try to copy and delete the object
instead. (This is how the HCP WebDAV MOVE method works.) If deletion
is not allowed (for example, because the object is under retention), the
original object remains in place, regardless of whether the copy is created.

When a copy is created and the original object is deleted, the move or
rename operation appears to have been successful.
196 Chapter 9: General usage considerations

Using the Default Namespace

Deleting objects under repair
Deleting objects under repair

If you try to delete an object while HCP is repairing it, HCP returns a error
response and the object is not deleted. For HTTP and WebDAV, the return
value is a 409 (Conflict) error and for CIFS and NFS, the request may time
out. When you get such errors, wait a few minutes and then try the
request again.

Deleting directories

You can delete a directory only when it is empty. Some clients, however,
can appear to delete nonempty directories, as long as those directories
don’t contain objects under retention. In such cases, what’s really
happening is that the client is using a single call to HCP to first delete the
objects in the directory and then delete the now empty directory.

Multithreading

HCP lets multiple threads access the namespace simultaneously. Using
multiple threads can enhance performance, especially when accessing
many small files across multiple directories.

Here are some guidelines for the effective use of multithreading:

• Concurrent threads, both reads and writes, should be directed against
different directories. If that’s not possible, multiple threads working
against a single directory are still better than a single thread.

• To the extent possible, concurrent threads should work against
different nodes. If that’s not possible, multiple threads working against
a single node are still better than a single thread.

Tip: For better performance, consider limiting the number of
concurrent read threads per node to 200 and concurrent write threads
per node to 50 for small objects. For large objects, consider using
fewer threads.
Chapter 9: General usage considerations 197

Using the Default Namespace

Multithreading
198 Chapter 9: General usage considerations

Using the Default Namespace

A

HTTP reference

This appendix contains a reference of HTTP methods available for
accessing the namespace and the possible return codes and HCP-specific
response headers.

For detailed information on using HTTP, see Chapter 4, “HTTP,” on page 69.
Appendix A: HTTP reference 199

Using the Default Namespace

HTTP methods
HTTP methods

The table below provides a quick reference to the HTTP methods you use to
access and manage the namespace.

Method Summary Elements
Return codes /

HCP-specific headers

CHMOD Changes POSIX
permissions for:

• Objects

• Directories

• For objects, a URL with either:

- The object path

- The cryptographic hash value
for the object

• For directories, a URL with the
directory path

• This URL query parameter:

permissions=octal-permissi
on-value

Return codes

Success: 200
Error: 300, 400, 403,
404, 414, 500, 503

Response headers

X-ArcErrorMessage
(if an error occurred
and more information
is available)

X-ArcServicedBySystem

CHOWN Changes POSIX owner
and group IDs for:

• Objects

• Directories

• For objects, a URL with either:

- The object path

- The cryptographic hash value
for the object

• For directories, a URL with the
directory path

• For both, these query parameters:

- uid=user-id

- gid=group-id

Return codes

Success: 200
Error: 300, 400, 403,
404, 414, 500, 503

Response headers

X-ArcErrorMessage
(if an error occurred
and more information
is available)

X-ArcServicedBySystem

DELETE Deletes:

• Objects

• Empty directories

• Custom metadata

• Symbolic links

• For objects, a URL with either:

- The object path

- The cryptographic hash value
for the object

• For directories, custom metadata,
and symbolic links, a URL with the
applicable path

Return codes

Success: 200
Error: 204, 300, 400,
403, 404, 409, 414, 500,
503

Response headers

X-ArcClusterTime
X-ArcErrorMessage

(if an error occurred
and more information
is available)

X-ArcServicedBySystem
200 Appendix A: HTTP reference

Using the Default Namespace

HTTP methods
GET Retrieves:

• Objects

• Directory listings

• HCP-specific
metadata

• Custom metadata

• For objects, a URL with either:

- The object path

- The cryptographic hash value
for the object

• For directories, HCP-specific
metadata, and custom metadata, a
URL with the directory or metafile
path

• To receive object data or custom
metadata in gzip format, an
Accept-Encoding request header
that contains gzip or specifies *

• To choose not to wait for delayed
retrievals of objects or custom
metadata, this query parameter:

nowait

• To retrieve object data and custom
metadata together:

- This query parameter:
type=whole-object

- To control the order of the
returned information, an
X-ArcCustomMetadataFirst
request header with a value of
true or false (the default)

• For objects, optionally, an HTTP
Range header specifying any of
these zero-indexed byte ranges:

- start-position–end-position

- start-position–

- –offset-from-end

Return codes

Success: 200, 206
Error: 204, 300, 400,
403, 404, 406, 414, 416,
500, 503

Response headers

All:
X-ArcClusterTime
X-ArcErrorMessage

(if an error occurred
and more information
is available)

X-ArcPermissionsUidGid
X-ArcServicedBySystem
X-ArcSize
X-ArcTimes

Objects and directories:
X-ArcObjectType

Objects and custom
metadata:

X-ArcCustomMetadata
ContentType

X-ArcCustomMetadata
First

X-ArcDataContentType

If response is in gzip-
compressed format:

Content-Encoding
X-ArcContentLength

 (Continued)

Method Summary Elements
Return codes /

HCP-specific headers
Appendix A: HTTP reference 201

Using the Default Namespace

HTTP methods
HEAD • Checks existence
of:

- Objects

- Directories

- Custom
metadata

• Checks available
space and
software version

• For objects, a URL with either:

- The object path

- The cryptographic hash value
of the object

• For directories or custom
metadata, a URL with the directory
or metafile path

• For available space and software
version, the namespace URL

Return codes

Success: 200
Error: 204, 300, 400,
403, 404, 414, 500, 503

Response headers

All:
X-ArcClusterTime
X-ArcErrorMessage

(if an error occurred
and more information
is available)

All existence checks:
X-ArcPermissionsUidGid
X-ArcServicedBySystem
X-ArcSize
X-ArcTimes

Space and version check:
X-ArcAvailableCapacity
X-ArcTotalCapacity
X-ArcSoftwareVersion

MKDIR Creates a new empty
directory

• A URL with the directory path

• To specify metadata when creating
the directory, any combination of
these query parameters:

- gid=group-id

- uid=user-id

- directory_permissions=
octal-permission-value

- atime=unix-time-value

- mtime=unix-time-value

Return codes

Success: 201
Error: 400, 403, 409,
414, 500, 503

Response headers

X-ArcErrorMessage
(if an error occurred
and more information
is available)

X-ArcServicedBySystem

 (Continued)

Method Summary Elements
Return codes /

HCP-specific headers
202 Appendix A: HTTP reference

Using the Default Namespace

HTTP methods
PUT • Stores objects

• Changes these
metadata values
for existing
objects:

- Retention
setting

- Shred setting

- Index setting

• Stores or replaces
custom metadata

• To store objects:

- A URL with the object path

- A body containing object data

- To send gzip-compressed data,
a Content-Encoding request
header with a value of gzip and
a chunked transfer encoding

- To store object data and
custom metadata together:
• An X-ArcSize request header

with the object size in bytes
• The type=whole-object

query parameter
• Custom metadata appended

to the object data
- To specify system metadata,

any combination of:

• gid=user-id
• uid=group-id
• directory_permissions=

octal-permission-value
• file_permissions=

octal-permission-value
• atime=unix-time-value
• mtime=unix-time-value
• index=(0|1)
• retention=retention-setti

ng
• shred=(0|1)

• To change HCP-specific metadata, a
URL with the path for one of these
metafiles:

- retention.txt
- shred.txt
- index.txt

• To store or replace custom
metadata only:

- A URL with the path for the
custom-metadata.xml file

- To send gzip-compressed data,
a Content-Encoding request
header with a value of gzip and
a chunked transfer encoding

Return codes

Success: 201
Error: 400, 403, 404,
414, 500, 503

Response headers

All:
X-ArcClusterTime
X-ArcErrorMessage

(if an error occurred
and more information
is available)

X-ArcServicedBySystem

When adding object data
and custom metadata
together:

X-ArcCustomMetadata
Hash

X-ArcHash

 (Continued)

Method Summary Elements
Return codes /

HCP-specific headers
Appendix A: HTTP reference 203

Using the Default Namespace

HTTP return codes
HTTP return codes

All responses to HTTP requests include a return code. The table below
describes the possible return codes for all HTTP namespace requests.

TOUCH Sets these POSIX
attributes for objects
and directories:

• atime

• mtime

• A URL with either:

- The object path

- The cryptographic hash value
of the object

• Either or both of these query
parameters:

- atime=unix-time-value

- mtime=unix-time-value

Return codes

Success: 200
Error: 300, 400, 403,
404, 414, 500, 503

Response headers

X-ArcErrorMessage
(if an error occurred
and more information
is available)

X-ArcServicedBySystem

 (Continued)

Method Summary Elements
Return codes /

HCP-specific headers

Code Meaning Methods Description

200 OK CHMOD
CHOWN
DELETE
GET
HEAD
TOUCH

HCP successfully performed the requested operation.

201 Created MKDIR
PUT

HCP successfully added an object, directory, or custom
metadata to the namespace or replaced the custom
metadata for an object.

204 No Content DELETE, GET, or
HEAD of custom
metadata

The specified object does not have custom metadata.

206 Partial content GET with a Range
header

HCP successfully retrieved the data in the byte range
specified in the request.

300 Multiple Choice CHMOD
CHOWN
DELETE
GET
HEAD
TOUCH

For a request by cryptographic hash value, HCP found
two or more objects with the specified hash value.
204 Appendix A: HTTP reference

Using the Default Namespace

HTTP return codes
400 Bad request All One of:

• The URL in the request is not well-formed.

• The request specifies a cryptographic hash value
that’s not valid for the specified cryptographic hash
algorithm.

• A PUT request has a type=whole-object query
parameter, and either:

- The request does not have an X-ArcSize header.

- The X-ArcSize header value is greater than the
content length.

• A CHMOD, CHOWN, or TOUCH request is missing a
required query parameter.

• For a PUT request to store custom metadata:

- The namespace has custom metadata XML
checking enabled, and the request includes
custom metadata that is not well-formed XML.

- The request is trying to store custom metadata
for a directory or symbolic link.

• A PUT request is trying to store a metafile for an
object that does not exist.

• A PUT request has a Content-Encoding header that
specifies gzip, but the data is not gzip-compressed.

• The request contains an unsupported query
parameter or an invalid value for a query
parameter.

If more information about the error is available,
the response headers include the HCP-specific
X-ArcErrorMessage.

 (Continued)

Code Meaning Methods Description
Appendix A: HTTP reference 205

Using the Default Namespace

HTTP return codes
403 Forbidden All One of:

• The namespace does not exist.

• The access method (HTTP or HTTPS) is disabled.

• The namespace is not configured to allow the
operation.

• You do not have permission to perform the
requested operation.

• For a CHMOD or CHOWN request, the URL specifies
a symbolic link.

• For a DELETE request to delete an object, the
object is under retention.

• For a DELETE request to delete a directory, the
directory is not empty.

If more information about the error is available,
the response headers include the HCP-specific
X-ArcErrorMessage.

404 Not Found CHMOD
CHOWN
DELETE
GET
HEAD
TOUCH

One of:

• HCP could not find the specified object, metafile, or
directory.

• For operations on custom metadata, HCP could not
find the object to which the operation applies.

For a request by cryptographic hash value, this return
code can indicate that the object has not been indexed
by the search facility selected for use with the Search
Console.

If the HDDS search facility is selected for use with the
Search Console and the request specifies a
cryptographic hash value, this return code can indicate
that the value was found in HDDS but the object could
not be retrieved from HCP.

406 Not Acceptable GET The request has an Accept-Encoding header that does
not include gzip or specify *.

 (Continued)

Code Meaning Methods Description
206 Appendix A: HTTP reference

Using the Default Namespace

HTTP return codes
409 Conflict DELETE
MKDIR
PUT

One of:

• DELETE: HCP could not delete the specified object,
directory, or custom metadata because it is
currently being written to the namespace.

• MKDIR, PUT: HCP could not add the directory or
object to the namespace because the directory or
object already exists.

• PUT of custom metadata: The object for which the
custom metadata is being stored was ingested
using CIFS or NFS, and the lazy close period for the
object has not expired.

413 File Too Large PUT of an object
or custom
metadata

One of:

• Not enough space is available to store the data. Try
the request again after objects are deleted from the
namespace or the system storage capacity is
increased.

• The request is trying to store an object that is
larger than two TB. HCP cannot store objects
larger than two TB.

• The request is trying to store custom metadata that
is larger than one GB. HCP cannot store custom
metadata larger than one GB.

414 Request URI too
long

All The portion of the URL following fcfs_data or
fcfs_metadata is longer than 4,095 bytes.

415 Unsupported
Media Type

PUT The request has a Content-Encoding header with a
value other than gzip.

416 Requested
range not
satisfiable

GET with a Range
header

One of:

• The specified start position is greater than the size
of the requested data.

• The size of the specified range is zero.

500 Internal server
error

All An internal error occurred. Try the request again,
gradually increasing the delay between each successive
attempt.

If this error happens repeatedly, please contact your
namespace administrator.

 (Continued)

Code Meaning Methods Description
Appendix A: HTTP reference 207

Using the Default Namespace

HTTP return codes
503 Service
Unavailable

All One of:

• For a request by cryptographic hash value, the
cryptographic hash algorithm specified in the
request is not the one the namespace is using.

• For a request by cryptographic hash value, HCP
cannot process the hash value because no search
facility is selected for use with the Search Console.

• For a request by cryptographic hash value, the
request URL specifies a namespace other than the
default namespace.

• For a GET request to retrieve object data or custom
metadata, the request specifies the nowait query
parameter, and HCP determined that the request
would have taken a significant amount of time to
return the object data or custom metadata.

• HCP is temporarily unable to handle the request,
probably due to system overload, maintenance, or
upgrade.

• For a GET or HEAD request, HCP tried to read the
object from another system in the replication
topology but could not.

For the last three cases, try the request again,
gradually increasing the delay between each successive
attempt. If the error persists, see your namespace
administrator.

If more information about the error is available,
the response headers include the HCP-specific
X-ArcErrorMessage.

 (Continued)

Code Meaning Methods Description
208 Appendix A: HTTP reference

Using the Default Namespace

HCP-specific HTTP response headers
HCP-specific HTTP response headers

HTTP responses can include one or more HCP-specific headers that provide
information relevant to the request. The table below describes the
HCP-specific HTTP response headers. It does not include deprecated
headers.

Header Methods Description

X-ArcAvailableCapacity HEAD to check
storage capacity
and software
version

The amount of storage space currently available for
storing additional objects, in bytes. The header has
this format:

X-ArcAvailableCapacity: available-bytes

available-bytes is the total space available for all
data, including object data, metadata, any
redundant data required by the DPL, and the
metadata query engine index.

X-ArcClusterTime DELETE
GET
HEAD
PUT

The time at which HCP sent the response to the
request, in seconds since January 1, 1970, at
00:00:00.

X-ArcContentLength GET with
compressed
transmission

The length, before compression, of the returned
data.

X-ArcCustomMetadata
ContentType

GET of object data
and custom
metadata

Always text/xml.

X-ArcCustomMetadata
First

GET of object data
and custom
metadata

One of:

• true if the custom metadata precedes the object
data

• false if the object data precedes the custom
metadata

X-ArcCustomMetadata
Hash

PUT that stores
object data and
custom metadata
together

The cryptographic hash algorithm HCP uses and the
cryptographic hash value of the stored custom
metadata, in this format:

 X-ArcCustomMetadataHash: hash-algorithm
hash-value

You can use the returned hash value to verify that
the stored custom metadata is the same as the
metadata you sent. To do so, compare this value
with a hash value that you generate from the original
custom metadata.
Appendix A: HTTP reference 209

Using the Default Namespace

HCP-specific HTTP response headers
X-ArcDataContentType GET of object data
and custom
metadata

The Internet media type of the object, such as
text/plain or image/jpg.

X-ArcErrorMessage All Detailed information about the cause of an error.
This header is returned only if a request results in a
400, 403, or 503 error code and HCP has specific
information about the cause.

X-ArcHash PUT of object data
or custom
metadata

The cryptographic hash algorithm HCP uses and the
cryptographic hash value of the stored object or
metafile, in this format:

 X-ArcHash: hash-algorithm hash-value

If the request stored object data and custom
metadata together, this value is the hash of the
object data only.

You can use the returned hash value to verify that
the stored data is the same as the data you sent. To
do so, compare this value with a hash value that you
generate from the original data.

X-ArcPermissionsUidGid GET
HEAD of object,
directory, or
metafile

The POSIX permissions (mode), owner ID, and group
ID for the object, directory, or metafile in the format:

X-ArcPermissionsUidGid: mode=mode; uid=user-id;
gid=group-id

X-ArcServicedBySystem All methods except
HEAD to check
storage capacity
and software
version

The domain name of the HCP system responding to
the request.

If the target HCP system participates in replication
and is unable to respond to the request, this value
may identify another system in the replication
topology.

X-ArcSoftwareVersion HEAD to check
storage capacity
and software
version

The version number of the HCP software.

X-ArcSize GET
HEAD

The size of the object, directory, or metafile, in
bytes. For directories, the value of this header is
always -1.

X-ArcTimes GET
HEAD of object,
directory, or
metafile

The POSIX ctime, mtime, and atime values for the
object, directory, or metafile, in the format:

X-ArcTimes: ctime=ctime; mtime=mtime; atime=atime

 (Continued)

Header Methods Description
210 Appendix A: HTTP reference

Using the Default Namespace

HCP-specific HTTP response headers
X-ArcTotalCapacity HEAD to check
storage capacity
and software
version

The total amount of storage space available to the
namespace, in bytes. The header has this format:

X-ArcTotalCapacity: total-bytes

total-bytes is the total space available for all data
stored in the namespace, including object data,
metadata, any redundant data required by the DPL,
and the metadata query engine index. The value
includes both used and unused space.

 (Continued)

Header Methods Description
Appendix A: HTTP reference 211

Using the Default Namespace

HCP-specific HTTP response headers
212 Appendix A: HTTP reference

Using the Default Namespace

B

Java classes for examples

This appendix contains the implementation of these Java classes that are
used in examples in this book:

• GZIPCompressedInputStream — This class is used by the
WriteToHCP method of the HTTPCompression class. This method is
defined in “Example 3: Sending object data in compressed format
(Java®)” on page 83.

• WholeIOInputStream — This class is used by the WholeWriteToHCP
method of the WholeIO class. This method is defined in “Example 5:
Storing object data with custom metadata (Java)” on page 85.

• WholeIOOutputStream — This class is used by the
WholeReadFromHCP method of the WholeIO class. This method is
defined in “Example 6: Retrieving object data and custom metadata
together (Java)” on page 101.
Appendix B: Java classes for examples 213

Using the Default Namespace

GZIPCompressedInputStream class
GZIPCompressedInputStream class

package com.hds.hcp.examples;

import java.io.IOException;
import java.io.InputStream;
import java.util.zip.CRC32;
import java.util.zip.Deflater;
import java.util.zip.DeflaterInputStream;

public class GZIPCompressedInputStream extends DeflaterInputStream {

 /**
 * This static class is used to hijack the InputStream
 * read(b, off, len) function to be able to compute the CRC32
 * checksum of the content as it is read.
 */
 static private class CRCWrappedInputStream extends InputStream {
 private InputStream inputStream;

 /**
 * CRC32 of uncompressed data.
 */
 protected CRC32 crc = new CRC32();

 /**
 * Construct the object with the InputStream provided.
 * @param pInputStream - Any class derived from InputStream class.
 */
 public CRCWrappedInputStream(InputStream pInputStream) {
 inputStream = pInputStream;

 crc.reset(); // Reset the CRC value.
 }

 /**
 * Methods in this group are the InputStream equivalent methods
 * that just call the method on the InputStream provided during
 * construction.
 */
 public int available() throws IOException
 { return inputStream.available(); };
 public void close() throws IOException { inputStream.close(); };
 public void mark(int readlimit) { inputStream.mark(readlimit); };
 public boolean markSupported()
 { return inputStream.markSupported(); };
 public int read() throws IOException { return inputStream.read(); };
 public int read(byte[] b) throws IOException
 { return inputStream.read(b); };
 public void reset() throws IOException { inputStream.reset(); };
 public long skip(long n) throws IOException
 { return inputStream.skip(n); };
214 Appendix B: Java classes for examples

Using the Default Namespace

GZIPCompressedInputStream class
 /*
 * This function intercepts all read requests in order to
 * calculate the CRC value that is stored in this object.
 */
 public int read(byte b[], int off, int len) throws IOException {
 // Do the actual read from the input stream.
 int retval = inputStream.read(b, off, len);

 // If we successfully read something, compute the CRC value
 // of it.
 if (0 <= retval) {
 crc.update(b, off, retval);
 }

 // All done with the intercept. Return the value.
 return retval;
 };

 /*
 * Function to retrieve the CRC value computed thus far while the
 * stream was processed.
 */
 public long getCRCValue() { return crc.getValue(); };
 } // End class CRCWrappedInputStream.

 /**
 * Create a new input stream with the default buffer size of
 * 512 bytes.
 * @param pInputStream - InputStream to read content for
 * compression.
 * @throws IOException if an I/O error has occurred.
 */
 public GZIPCompressedInputStream(InputStream pInputStream)
 throws IOException {
 this(pInputStream, 512);
 }

 /**
 * Create a new input stream with the specified buffer size.
 * @param pInputStream - InputStream to read content for
 * compression.
 * @param size - The output buffer size.
 * @exception - IOException if an I/O error has occurred.
 */
 public GZIPCompressedInputStream(InputStream pInputStream, int size)
 throws IOException {
 super(new CRCWrappedInputStream(pInputStream),
 new Deflater(Deflater.DEFAULT_COMPRESSION, true), size);

 mCRCInputStream = (CRCWrappedInputStream) super.in;
 }

 // Indicator for if EOF has been reached for this stream.
Appendix B: Java classes for examples 215

Using the Default Namespace

GZIPCompressedInputStream class
 private boolean mReachedEOF = false;

 // Holder for the hijacked InputStream that computes the
 // CRC32 value.
 private CRCWrappedInputStream mCRCInputStream;

 /*
 * GZIP header structure and positional variable.
 */
 private final static int GZIP_MAGIC = 0x8b1f;

 private final static byte[] mHeader = {
 (byte) GZIP_MAGIC, // Magic number (short)
 (byte)(GZIP_MAGIC >> 8), // Magic number (short)
 Deflater.DEFLATED, // Compression method (CM)
 0, // Flags (FLG)
 0, // Modification time MTIME (int)
 0, // Modification time MTIME (int)
 0, // Modification time MTIME (int)
 0, // Modification time MTIME (int)
 0, // Extra flags (XFLG)
 0 // Operating system (OS) FYI. UNIX/Linux OS is 3
 };

 private int mHeaderPos = 0; // Keeps track of how much of the
 // header has already been read.

 /*
 * GZIP trailer structure and positional indicator.
 *
 * Trailer consists of 2 integers: CRC32 value and original file
 * size.
 */
 private final static int TRAILER_SIZE = 8;
 private byte mTrailer[] = null;
 private int mTrailerPos = 0;

 /***
 * Overridden functions against the DeflatorInputStream.
 */

 /*
 * Function to indicate whether there is any content available to
 * read. It is overridden because there are the GZIP header and
 * trailer to think about.
 */
 public int available() throws IOException {
 return (mReachedEOF ? 0 : 1);
 }

 /*
 * This read function is the meat of the class. It handles passing
 * back the GZIP header, GZIP content, and GZIP trailer in that
216 Appendix B: Java classes for examples

Using the Default Namespace

GZIPCompressedInputStream class
 * order to the caller.
 */
 public int read(byte[] outBuffer, int offset, int maxLength)
 throws IOException, IndexOutOfBoundsException {

 int retval = 0; // Contains the number of bytes read into
 // outBuffer and will be the return value of
 // the function.
 int bIndex = offset; // Used as current index into outBuffer.
 int dataBytesCount = 0; // Used to indicate how many data bytes
 // are in the outBuffer array.

 // Make sure we have a buffer.
 if (null == outBuffer) {
 throw new NullPointerException("Null buffer for read");
 }

 // Make sure offset is valid.
 if (0 > offset || offset >= outBuffer.length)
 {
 throw new IndexOutOfBoundsException(
 "Invalid offset parameter value passed into function");
 }

 // Make sure the maxLength is valid.
 if (0 > maxLength || outBuffer.length - offset < maxLength)
 throw new IndexOutOfBoundsException(
 "Invalid maxLength parameter value passed into function");

 // Asked for nothing; you get nothing.
 if (0 == maxLength)
 return retval;

 /**
 * Put any GZIP header in the buffer if we haven't already returned
 * it from previous calls.
 */
 if (mHeaderPos < mHeader.length)
 {
 // Get how much will fit.
 retval = Math.min(mHeader.length - mHeaderPos, maxLength);

 // Put it there.
 for (int i = retval; i > 0; i--)
 {
 outBuffer[bIndex++] = mHeader[mHeaderPos++];
 }

 // Return the number of bytes copied if we exhausted the
 // maxLength specified.
 // NOTE: Should never be >, but...
 if (retval >= maxLength) {
 return retval;
Appendix B: Java classes for examples 217

Using the Default Namespace

GZIPCompressedInputStream class
 }
 }

 /**
 * At this point, the header has all been read or put into the
 * buffer.
 *
 * Time to add some GZIP compressed data, if there is still some
 * left.
 */
 if (0 != super.available()) {

 // Get some data bytes from the DeflaterInputStream.
 dataBytesCount = super.read(outBuffer, offset+retval,
 maxLength-retval);

 // As long as we didn't get EOF (-1), update the buffer index and
 // retval.
 if (0 <= dataBytesCount) {
 bIndex += dataBytesCount;
 retval += dataBytesCount;
 }

 // Return the number of bytes copied during this call if we
 // exhausted the maxLength requested.
 // NOTE: Should never be >, but...
 if (retval == maxLength) {
 return retval;
 }

 // If we got here, we should have read all that can be read from
 // the input stream, so make sure the input stream is at EOF just
 // in case someone tries to read it outside this class.
 byte[] junk = new byte[1];
 if (-1 != super.read(junk, 0, junk.length)) {
 // Should never happen, but...
 throw new IOException(
 "Unexpected content read from input stream when EOF expected");
 }
 }

 /**
 * Got this far; time to write out the GZIP trailer.
 */

 // Have we already set up the GZIP trailer in a previous
 // invocation?
 if (null == mTrailer) {
 // Time to prepare the trailer.
 mTrailer = new byte[TRAILER_SIZE];

 // Put the content in it.
 writeTrailer(mTrailer, 0);
218 Appendix B: Java classes for examples

Using the Default Namespace

GZIPCompressedInputStream class
 }

 // If there are still GZIP trailer bytes to be returned to the
 // caller, do as much as will fit in the outBuffer.
 if (mTrailerPos < mTrailer.length) {

 // Get the number of bytes that will fit in the outBuffer.
 int trailerSize = Math.min(mTrailer.length - mTrailerPos,
 maxLength - bIndex);

 // Move them in.
 for (int i = trailerSize; i > 0; i--)
 {
 outBuffer[bIndex++] = mTrailer[mTrailerPos++];
 }

 // Return the total number of bytes written during this call.
 return retval + trailerSize;
 }

 /**
 * If we got this far, we have already been asked to read
 * all content that is available.
 *
 * So we are at EOF.
 */
 mReachedEOF = true;
 return -1;
 }

 /***
 * Helper functions to construct the trailer.
 */

 /*
 * Write GZIP member trailer to a byte array, starting at a given
 * offset.
 */
 private void writeTrailer(byte[] buf, int offset) throws IOException
 {
 writeInt((int)mCRCInputStream.getCRCValue(), buf, offset);
 // CRC32 of uncompr. data
 writeInt(def.getTotalIn(), buf, offset + 4);
 // Number of uncompr. bytes
 }

 /*
 * Write integer in Intel byte order to a byte array, starting at
 * a given offset.
 */
 private void writeInt(int i, byte[] buf, int offset)
 throws IOException {
 writeShort(i & 0xffff, buf, offset);
Appendix B: Java classes for examples 219

Using the Default Namespace

WholeIOInputStream class
 writeShort((i >> 16) & 0xffff, buf, offset + 2);
 }

 /*
 * Write short integer in Intel byte order to a byte array,
 * starting at a given offset
 */
 private void writeShort(int s, byte[] buf, int offset)
 throws IOException {
 buf[offset] = (byte)(s & 0xff);
 buf[offset + 1] = (byte)((s >> 8) & 0xff);
 }
}

WholeIOInputStream class

package com.hds.hcp.examples;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;

/**
 * This class defines an InputStream that is composed of both a data
 * file and a custom metadata file.
 *
 * The class is used to provide a single stream of data and custom
 * metadata to be transmitted over HTTP for type=whole-object PUT
 * operations.
 */
public class WholeIOInputStream extends InputStream {

 /*
 * Constructor. Passed in an InputStream for the data file and the
 * custom metadata file.
 */
 WholeIOInputStream(
 InputStream inDataFile, InputStream inCustomMetadataFile) {
 mDataFile = inDataFile;
 mCustomMetadataFile = inCustomMetadataFile;

 bFinishedDataFile = false;
 }

 // Private member variables.
 private Boolean bFinishedDataFile; // Indicates when all data file
 // content has been read.
 private InputStream mDataFile, mCustomMetadataFile;

 /*
 * Base InputStream read function that reads from either the data
 * file or custom metadata file, depending on how much has been read so
 * far.
220 Appendix B: Java classes for examples

Using the Default Namespace

WholeIOOutputStream class
 */
 public int read() throws IOException {
 int retval = 0; // Assume nothing read.

 // Do we still need to read from the data file?
 if (! bFinishedDataFile) {
 // Read from the data file.
 retval = mDataFile.read();

 // If reached the end of the stream, indicate it is time to read
 // from the custom metadata file.
 if (-1 == retval) {
 bFinishedDataFile = true;
 }
 }

 // This should not be coded as an "else" because it may need to be
 // run after the data file has reached EOF.
 if (bFinishedDataFile) {
 // Read from the custom metadata file.
 retval = mCustomMetadataFile.read();
 }

 return retval;
 }
}

WholeIOOutputStream class

package com.hds.hcp.examples;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;

/**
 * This class defines an OutputStream that will create both the data
 * file and the custom metadata file for an object. The copy() method
 * is used to read an InputStream and create the two output files based
 * on the indicated size of the data file portion of the stream.
 *
 * The class is used to split and create content retrieved over HTTP as
 * a single stream for type=whole-object GET operations.
 */
public class WholeIOOutputStream extends OutputStream {

 // Constructor. Passed output streams for the data file and the
 // custom metadata file. Allows specification of whether the custom
 // metadata comes before the data.
 WholeIOOutputStream(OutputStream inDataFile,
 OutputStream inCustomMetadataFile,
 Boolean inCustomMetadataFirst) {
Appendix B: Java classes for examples 221

Using the Default Namespace

WholeIOOutputStream class
 bCustomMetadataFirst = inCustomMetadataFirst;

 // Set up first and second file output streams based on whether
 // custom metadata is first in the stream.
 if (bCustomMetadataFirst) {
 mFirstFile = inCustomMetadataFile;
 mSecondFile = inDataFile;
 } else {
 mFirstFile = inDataFile;
 mSecondFile = inCustomMetadataFile;
 }

 bFinishedFirstPart = false;
 }

 // Member variables.
 private Boolean bFinishedFirstPart;
 private Boolean bCustomMetadataFirst;
 private OutputStream mFirstFile, mSecondFile;

 /**
 * This routine copies content in an InputStream to this
 * output stream. The first inDataSize number of bytes are written
 * to the data file output stream.
 *
 * @param inStream - InputStream to copy content from.
 * @param inFirstPartSize - number of bytes of inStream that should
 * be written to the first output stream.
 * @throws IOException
 */
 public void copy(InputStream inStream, Integer inFirstPartSize)
 throws IOException {
 int streamPos = 0;

 int readValue = 0;
 // Keep reading bytes until EOF has been reached.
 while (-1 != (readValue = inStream.read())) {
 // Have we read all the bytes for the data file?
 if (streamPos == inFirstPartSize)
 {
 // Yes.
 bFinishedFirstPart = true;
 }

 // Write the bytes read.
 write(readValue);
 streamPos++;
 }
 }

 /**
 * This is the core write function for the InputStream implementation.
 * It writes to either the data file stream or the custom metadata
222 Appendix B: Java classes for examples

Using the Default Namespace

WholeIOOutputStream class
 * file stream.
 */
 public void write(int b) throws IOException {
 // Write to first or second file depending on where we are in the
 // stream.
 if (! bFinishedFirstPart) {
 mFirstFile.write(b);
 } else {
 mSecondFile.write(b);
 }
 }

 /**
 * flush() method to flush all files involved.
 */
 public void flush() throws IOException {
 mFirstFile.flush();
 mSecondFile.flush();
 super.flush();
 }

 /**
 * close() method to first close the data file and custom metadata
 * file. Then close itself.
 */
 public void close() throws IOException {
 mFirstFile.close();
 mSecondFile.close();
 super.close();
 }
}

Appendix B: Java classes for examples 223

Using the Default Namespace

WholeIOOutputStream class
224 Appendix B: Java classes for examples

Using the Default Namespace

Glossary

A

access protocol

See namespace access protocol.

Active Directory (AD)

A Microsoft product that, among other features, provides user
authentication services.

AD

See Active Directory (AD).

anonymous access

A method of access to a namespace wherein the user or application
gains access without presenting any credentials. See also
authenticated access.

appendable object

An object to which data can be added after it has been successfully
stored. Appending data to an object does not modify the original
fixed-content data, nor does it create a new version of the object.
Once the new data is added to the object, that data also cannot be
modified.

Appendable objects are supported only with the CIFS and NFS
protocols.
Glossary 225

Using the Default Namespace

atime
atime

In POSIX file systems, metadata that specifies the date and time a file
was last accessed. In HCP, POSIX metadata that initially specifies the
date and time at which an object was ingested. HCP does not
automatically change the atime value when the object is accessed.

Users and applications can change this metadata, thereby causing it to
no longer reflect the actual storage time. Additionally, HCP can be
configured to synchronize atime values with retention settings.

authenticated access

A method of access to a namespace wherein the user or application
presents credentials to gain access. See also anonymous access.

authentication

See user authentication.

C

capacity

The total amount of primary storage space in HCP, excluding the space
required for system overhead and the operating system. This is the
amount of space available for all data to be stored in primary running
storage and primary spindown storage, including the fixed-content
data, metadata, any redundant data required to satisfy service plans,
and the metadata query engine index.

CIFS

Common Internet File System. One of the namespace access protocols
supported by HCP. CIFS lets Windows clients access files on a remote
computer as if the files were part of the local file system.

compliance mode

The retention mode in which objects under retention cannot be deleted
through any mechanism. This is the more restrictive retention mode.

cryptographic hash value

A system-generated metadata value calculated by a cryptographic hash
algorithm from object data. This value is used to verify that the
content of an object has not changed.
226 Glossary

Using the Default Namespace

domain
ctime

POSIX metadata that specifies the date and time of the last change to
the metadata for an object. For a directory, this is the time of the last
change to the metadata for any object in the directory.

custom metadata

User-supplied information about an HCP object. Users and applications
can use custom metadata to understand and repurpose object content.

D

Data Migrator

See HCP Data Migrator (HCP-DM).

data protection level (DPL)

The number of copies of the data for an object HCP must maintain in
the repository. The DPL for an object is determined by the service plan
that applies to the namespace containing the object.

dead properties

For WebDAV only, arbitrary name/value pairs that the server stores but
does not use or modify in any way.

default namespace

A namespace that supports only anonymous access through the HTTP
protocol. An HCP system can have at most one default namespace.
The default namespace is used mostly with applications that existed
before release 3.0 of HCP.

default tenant

The tenant that manages the default namespace.

disposition

The automatic deletion of an expired object by HCP.

DNS

See domain name system (DNS).

domain

A group of computers and devices on a network that are administered
as a unit.
Glossary 227

Using the Default Namespace

domain name system (DNS)
domain name system (DNS)

A network service that resolves domain names into IP addresses for
client access.

DPL

See data protection level (DPL).

E

See HCP S Series Node.

enterprise mode

The retention mode in which these operations are allowed:

• Privileged delete

• Changing the retention class of an object to one with a shorter
duration

• Reducing retention class duration

• Deleting retention classes

This is the less restrictive retention mode.

expired object

An object that is no longer under retention.

F

fixed-content data

A digital asset ingested into HCP and preserved in its original form as
the core part of an object. Once stored, fixed-content data cannot be
modified.

G

GID

POSIX group identifier.
228 Glossary

Using the Default Namespace

HDDS
H

hash value

See cryptographic hash value.

HCP

See Hitachi Content Platform (HCP).

HCP Data Migrator (HCP-DM)

An HCP utility that can transfer data from one location to another,
delete data from a location, and change object metadata in a
namespace. Each location can be a local file system, an HCP
namespace, a default namespace, or an HCAP 2.x archive.

HCP-DM

See HCP Data Migrator (HCP-DM).

HCP-FS

See HCP file system (HCP-FS).

HCP file system (HCP-FS)

The HCP runtime component that represents each object in a
namespace as a set of files. One of these files contains the object data.
The others contain the object metadata.

HCP metadata query API

See metadata query API.

HCP namespace

A namespace that supports user authentication for data access through
the HTTP, HS3, and CIFS protocols. HCP namespaces also support
storage usage quotas, access control lists, and versioning. An HCP
system can have multiple HCP namespaces.

HCP node

See node.

HDDS

See Hitachi Data Discovery Suite (HDDS).
Glossary 229

Using the Default Namespace

HDDS search facility
HDDS search facility

One of the search facilities available for use with the HCP Search
Console. This facility interacts with Hitachi Data Discovery Suite.

Hitachi Content Platform (HCP)

A distributed object-based storage system designed to support large,
growing repositories of fixed-content data. HCP provides a single
scalable environment that can be used for archiving, business
continuity, content depots, disaster recovery, e-discovery, and other
services. With its support for multitenancy, HCP securely segregates
data among various constituents in a shared infrastructure. Clients can
use a variety of industry-standard protocols and various HCP-specific
interfaces to access and manipulate objects in an HCP repository.

Hitachi Data Discovery Suite (HDDS)

A Hitachi product that enables federated searches across multiple HCP
systems and other supported systems.

hold

A condition that prevents an object from being deleted by any means
and from having its metadata modified, regardless of its retention
setting, until it is explicitly released.

HS3 API

One of the namespace access protocols supported by HCP. HS3 is a
RESTful, HTTP-based API that is compatible with Amazon S3.

HTTP

HyperText Transfer Protocol. One of the namespace access protocols
supported by HCP.

HTTPS

HTTP with SSL security. See HTTP and SSL.
230 Glossary

Using the Default Namespace

metafile
I

index

An index of the objects in namespaces that is used to support search
operations. Each of the two search facilities, the metadata query
engine and the HDDS search facility, creates and maintains its own
separate index.

index setting

The property of an object that determines whether the metadata query
engine indexes the custom metadata associated with the object.

M

metadata

System-generated and user-supplied information about an object.
Metadata is stored as an integral part of the object it describes, thereby
making the object self-describing.

metadata query API

A RESTful HTTP interface that lets you search HCP for objects that meet
specified metadata-based or operation-based criteria. With this API,
you can search not only for objects currently in the repository but also
for information about objects that are no longer in the repository.

metadata query engine

One of the search facilities available for use with HCP. The metadata
query engine works internally to perform searches and return results
either through the metadata query API or to the HCP Metadata Query
Engine Console (also known as the HCP Search Console).

Metadata Query Engine Console

The web application that provides interactive access to the HCP search
functionality provided by the metadata query engine.

metadirectory

A directory in the fcfs_metadata directory hierarchy. Metadirectories
contain metafiles.

metafile

A file containing metadata about an object. Metafiles enable
file-system access to portions of the object metadata.
Glossary 231

Using the Default Namespace

mtime
mtime

POSIX metadata that specifies the date and time of the last change to
the object data. Because you cannot change the content of an object,
mtime is, by default, the date and time at which the object was added
to a namespace. Users and applications can change this metadata,
thereby causing it to no longer reflect the actual storage time.

N

namespace

A logical partition of the objects stored in an HCP system. A
namespace consists of a grouping of objects such that the objects in
one namespace are not visible in any other namespace. Namespaces
are configured independently of each other and, therefore, can have
different properties.

namespace access protocol

A protocol that can be used to transfer data to and from namespaces in
an HCP system. HCP supports the HTTP, HS3, WebDAV, CIFS, NFS, and
SMTP protocols for access to HCP namespaces and the default
namespace. HCP also supports the NDMP protocol for access to the
default namespace.

NDMP

Network Data Management Protocol. The namespace access protocol
HCP supports for backing up and restoring objects in the default
namespace.

NFS

Network File System. One of the namespace access protocols
supported by HCP. NFS lets clients access files on a remote computer
as if the files were part of the local file system.

node

A server running HCP software and networked with other such servers
to form an HCP system.
232 Glossary

Using the Default Namespace

POSIX
O

object

An exact digital representation of data as it existed before it was
ingested into HCP, together with the system and custom metadata that
describes that data. An object is handled as a single unit by all
transactions and internal processes, including shredding, indexing, and
replication.

object-based query

In the metadata query API, a query that searches for objects based on
object metadata. This includes both system metadata and the content
of custom metadata. The query criteria can also include the object
location (that is, the namespace and/or directory that contains the
object).

Object-based queries search only for objects that currently exist in the
repository.

operation-based query

In the metadata query API, a query that searches not only for objects
currently in the repository but also for information about objects that
have been deleted by a user or application or deleted through
disposition.

Criteria for operation-based queries can include object status (for
example, created or deleted), change time, index setting, and location
(that is, the namespace and/or directory that contains the object).

P

permission

In POSIX permissions, the ability granted to the owner, the members of
a group, or other users to access an object, directory, or symbolic link.
A POSIX permission can be read, write, or execute.

POSIX

Portable Operating System Interface for UNIX. A set of standards that
define an application programming interface (API) for software
designed to run under heterogeneous operating systems. HCP-FS is a
POSIX-compliant file system, with minor variations.
Glossary 233

Using the Default Namespace

privileged delete
privileged delete

A delete operation that works on an object regardless of whether the
object is under retention, except if the object is on hold. This operation
is available only to users and applications with explicit permission to
perform it.

protocol

See namespace access protocol.

Q

query

A request submitted to HCP to return metadata for objects that satisfy
a specified set of criteria. Also, to submit such a request.

query API

See metadata query API.

R

replication

The process of keeping selected HCP tenants and namespaces and
selected default-namespace directories in two HCP systems in sync with
each other. This entails copying object creations, deletions, and
metadata changes from each system to the other or from one system
to the other.

repository

The aggregate of the namespaces defined for an HCP system.

REST

Representational State Transfer. A software architectural style that
defines a set of rules (called constraints) for client/server
communication. In a REST architecture:

• Resources (where a resource can be any coherent and meaningful
concept) must be uniquely addressable.

• Representations of resources (for example, in XML format) are
transferred between clients and servers. Each representation
communicates the current or intended state of a resource.
234 Glossary

Using the Default Namespace

shred setting
• Clients communicate with servers through a uniform interface (that
is, a set of methods that resources respond to) such as HTTP.

retention class

A named retention setting. The value of a retention class can be a
duration, Deletion Allowed, Deletion Prohibited, or Initial Unspecified.

retention hold

See hold.

retention mode

A namespace property that affects which operations are allowed on
objects under retention. A namespace can be in either of two retention
modes: compliance or enterprise.

retention period

The period of time during which an object cannot be deleted (except by
means of a privileged delete).

retention setting

The property that determines the retention period for an object.

S

Search Console

The web application that provides interactive access to HCP search
functionality. When the Search Console uses the HCP metadata query
engine for search functionality, it is called the Metadata Query Engine
Console.

search facility

An interface between the HCP Search Console and the search
functionality provided by the metadata query engine or HDDS. Only
one search facility can be selected for use with the Search Console at
any given time.

shred setting

The property that determines whether an object will be shredded or
simply removed when it’s deleted from HCP.
Glossary 235

Using the Default Namespace

shredding
shredding

The process of deleting an object and overwriting the locations where
all its copies were stored in such a way that none of its data or
metadata can be reconstructed. Also called secure deletion.

SMTP

Simple Mail Transfer Protocol. The namespace access protocol HCP
uses to receive and store email data directly from email servers.

SSL

Secure Sockets Layer. A key-based Internet protocol for transmitting
documents through an encrypted link.

SSL server certificate

A file containing cryptographic keys and signatures. When used with
the HTTP protocol, an SSL server certificate helps verify that the web
site holding the certificate is authentic. An SSL server certificate also
helps protect data sent to or from that site.

system metadata

System-managed properties that describe the content of an object.
System metadata includes policies, such as retention and data
protection level, that influence how transactions and internal processes
affect the object.

T

tenant

An administrative entity created for the purpose of owning and
managing namespaces. Tenants typically correspond to customers or
business units.

U

UID

POSIX user ID.

Unix

Any UNIX-like operating system (such as UNIX itself or Linux).
236 Glossary

Using the Default Namespace

XML
user authentication

The process of checking that the combination of a specified username
and password is valid when a user tries to access a namespace.

W

WebDAV

Web-based Distributed Authoring and Versioning. One of the
namespace access protocols supported by HCP. WebDAV is an
extension of HTTP.

WORM

Write once, read many. A data storage property that protects the
stored data from being modified or overwritten.

X

XML

Extensible Markup Language. A standard for describing data content
using structural tags called elements.
Glossary 237

Using the Default Namespace

XML
238 Glossary

Using the Default Namespace

Index

Symbols
.directory-metadata metadirectory 19
.lost+found directory 18

Numbers
0 (retention setting) 40, 44, 46
-1 (retention setting) 40, 44, 46
-2 (retention setting) 40, 44, 46

A
Accept-Encoding header 75
access-time, WebDAV property 155, 157
adding

See storing; creating
appendable objects

about 3
and atime synchronization 51, 52
change times for 34

assigning objects to retention classes 48
atime attribute

about 36
changing with HTTP 127
changing with NFS (example) 180
overriding default values with HTTP 115, 120
synchronization with retention setting 51–57

atime HTTP query parameter 115, 120, 127
atime synchronization

about 51–52
with appendable objects 51, 52
creating empty directories 172
example 56–57
how it works 54–56
with retention classes 52
triggering for existing objects 52–53

attachments, email 190
available space, checking 141–143

B
basic authentication, WebDAV 161
browsing the namespace

HTTP 76
WebDAV 152–153

byte range, retrieving with HTTP 89–92

C
cadaver 147
capacity, checking storage 141–143
case sensitivity, CIFS 170–171
change time

appendable objects 35
HCP metadata 34–35

change-time, WebDAV property 155, 157
changing

atime attribute with NFS (example) 180
HCP-specific metadata with HTTP 123–125
index settings 59–60
ownership 39
permissions 39
POSIX metadata with HTTP 125–130
retention settings 45–48
retention settings with CIFS (example) 169
retention settings with NFS (example) 179
shred settings 58

checking
custom metadata existence 134–136
directory existence 106–108
object existence 86–89
storage capacity and software

version 141–143
choosing namespace access protocols 192–193
CIFS

about 5, 192, 193
case sensitivity 170–171
changing retention settings (example) 169
examples 168–170
failed write operations 174
Index 239

Using the Default Namespace

CIFS, lazy close
lazy close 172
mapping the namespace 168
multithreading 175, 197
namespace access 168
open objects 173
out-of-order writes 173
ownership of new objects 38–39
permission translations 171
permissions for new objects 38–39
retrieving deletable objects (example) 170
retrieving objects (example) 169–170
return codes 176
storing objects (example) 169
storing zero-sized files 172
supported operations 11–12
usage considerations 170–175
Windows temporary files 174–175

client timeouts, WebDAV 162
collections, WebDAV 3, 147

See also directories; metadirectories
collision handling

See replication collisions
connection failure handling with HTTP 145–146
Content-Encoding header 75
core-metadata.xml metafile

for directories 23
for objects 29

created.txt metafile
for directories 22
for objects 26

creating
See also storing
empty directories in Windows 172
empty directories with HTTP 105–106
symbolic links with NFS (example) 180

creation-time, WebDAV property 155, 157
cryptographic hash algorithm 210
cryptographic hash values

about 35
finding 74
metafile for 27
namespace access with 73–74

ctime attribute
about 36
and object change time 35

cURL 69
custom metadata

See also custom-metadata.xml metafile
about 2, 60
checking existence with HTTP 134–136
collisions 66–67
deleting with HTTP 139–141
files 60

metafile for 21, 30
with objects under retention 61
retrieving in compressed format 137
retrieving together with object data 90,

101–102
retrieving with HTTP 136–139
searching by 60
sending in compressed format 132
storing in compressed format 75
storing together with object data 78, 84–86
storing with HTTP 131–134

custom-metadata.xml metafile
See also custom metadata
about 30, 60
dead properties 160

D
data access 5–8
data chunking with HTTP 146
Data Migrator 8
data protection level 35
date and time, specifying for retention

setting 48–49
dead properties 160
default namespace

See also namespaces
about 3–4
access 5–8
accessing by DNS name 194
accessing by IP address 194–195
browsing with HTTP 76
browsing with WebDAV 152–153
checking storage capacity and software

version 141–143
CIFS access 168
HTTP access 70–72
NFS access 178
sending email to 188
SMTP access 188
WebDAV access 149–152

default tenant 4
delayed retrieval

custom metadata 137
objects 90

deletable objects
retrieving with CIFS (example) 170
retrieving with NFS (example) 181

deleting
custom metadata with HTTP 139–141
directories with HTTP 112–113, 197
objects under repair 197
objects under retention 40
objects with HTTP 102–105
240 Index

Using the Default Namespace

deleting, open objects with NFS
open objects with NFS 184
symbolic links 12

Deletion Allowed 40, 44, 46
Deletion Prohibited 40, 44, 46
directories

See also metadirectories
changing HCP-specific metadata with

HTTP 123–125
changing POSIX metadata with

HTTP 125–130
changing retention settings 46
checking existence with HTTP 106–108
creating with HTTP 105–106
deleting 197
deleting with HTTP 112–113
email 189–190
listing contents with HTTP 108–112
metadirectories for 18–20
metafiles for 21–25
overriding default metadata with

HTTP 119–121
permissions 37
renaming empty 52, 172
retrieving HCP-specific metadata with

HTTP 121–123
retrieving POSIX metadata with HTTP 123
structuring 195–196
WebDAV properties for 157–158

directory_permissions, HTTP query
parameter 115, 119

DNS names, namespace access by 194
DPL 35
dpl, WebDAV property 155
dpl.txt metafile

for directories 25
for objects 27

du with large directory trees 184

E
email

object naming 188–190
sending to the namespace 188

empty directories
creating in Windows 172
renaming 52, 172

error codes
See return codes

examples
changing atime attribute with NFS 180
changing HCP-specific metadata with

HTTP 124–125
changing POSIX metadata with

HTTP 128–130

changing retention settings with CIFS 169
changing retention settings with NFS 179
checking custom metadata existence with

HTTP 135–136
checking object existence with HTTP 88–89
checking storage capacity with

HTTP 142–143
creating directories with HTTP 106
creating symbolic links with NFS 180
deleting custom metadata with

HTTP 140–141
deleting directories with HTTP 113
deleting objects with HTTP 104–105
listing directory contents with HTTP 110–112
retrieving custom metadata with

HTTP 138–139
retrieving deletable objects with CIFS 170
retrieving deletable objects with NFS 181
retrieving HCP-specific metadata with

HTTP 122–123
retrieving object data and custom metadata

together 101–102
retrieving objects in compressed

format 98–100
retrieving objects with CIFS 169–170
retrieving objects with HTTP 96–102
retrieving objects with NFS 180–181
sending object data in compressed

format 82–84
specifying metadata on directory creation

with HTTP 120–121
specifying metadata on object creation with

HTTP 117–119
storing custom metadata with HTTP 133–134
storing object data and custom metadata

together 84–86
storing objects with CIFS 169
storing objects with HTTP 81–86
storing objects with NFS 179
WebDAV PROPFIND 159–160
WebDAV PROPPATCH 158–159

expired metadirectory 19, 41, 170, 181

F
failed nodes, NFS mounts on 184
failed write operations

CIFS 174
HTTP 145
NFS 183–184
WebDAV 163

fcfs_data directory 16, 18–19
fcfs_metadata metadirectory 16
file system
Index 241

Using the Default Namespace

file_permissions, HTTP query parameter
See HCP-FS
file_permissions, HTTP query parameter 115
files

See objects; metafiles
fixed-content data 2

G
gid

See also group IDs of owning groups
HTTP query parameter 115, 119, 126
WebDAV property 155, 157

group IDs of owning groups
See also gid
about 36
changing with HTTP 126
overriding default with HTTP 115, 119

gzip
compressing custom metadata data for

retrieval 137
compressing custom metadata for

transmission 132
compressing data for transmission 75
compressing object data and custom

metadata for retrieval 90
compressing object data and custom

metadata for transmission 78
compressing object data for retrieval 90,

98–100
compressing object data for transmission 77,

82–84
storing compressed data 75

H
hash algorithm

See cryptographic hash algorithm
hash value

See cryptographic hash value
hash.txt metafile 27
hash-scheme, WebDAV property 155
hash-value, WebDAV property 156
HCP

about 1–9
checking software version 141–143

HCP Data Migrator 8
HCP metadata query API

See metadata query API
HCP namespaces 3–4
HCP Search Console 7–8
HCP search facility

index settings with 58
HCP-DM 8
HCP-FS 4–5, 15–16

HCP-specific metadata
about 34–35
changing with HTTP 123–125

HDDS search facility 7
Hitachi Content Platform 1–9
Hold 48
holding objects 41–42
HTTP

See also individual HTTP methods
about 5, 192–193
browsing the namespace 76
changing HCP-specific metadata 123–125
checking existence of custom

metadata 134–136
checking existence of directories 106–108
checking existence of objects 86–89
compliance level 69
connection failure handling 145–146
creating empty directories 105–106
data chunking 146
delayed retrievals 90, 137
deleting custom metadata 139–141
deleting directories 112–113
deleting objects 102–105
failed write operations 145
HCP-specific response headers 209–211
listing directory contents 108–112
methods 200–204
multithreading 146, 197
namespace access with cryptographic hash

values 73–74
naming objects 72
open objects 144–145
ownership of new objects 38
permission checking 143–144
permissions for new objects 38
persistent connections 144
query parameters for metadata 114–115
retrieving custom metadata 136–139
retrieving HCP-specific metadata 121–123
retrieving objects 89–102
retrieving POSIX metadata 123
return codes 204–208
specifying metadata on directory

creation 119–121
specifying metadata on object

creation 114–119
storing objects 77–86
storing zero-sized files 144
supported operations 11–12
URLs for namespace access 70–73
usage considerations 143–146

HTTP CHMOD
242 Index

Using the Default Namespace

HTTP CHMOD
See also HTTP
example 128–129
modifying permissions 126
reference 200
return codes 127–128

HTTP CHOWN
See also HTTP
example 129–130
modifying object owner and group 126
reference 200
return codes 127–128

HTTP DELETE
See also HTTP
deleting custom metadata 139–141
deleting directories 112–113
deleting objects 102–105
examples 104–105, 113, 140–141
reference 200
response headers 104, 112, 140
return codes 103–104, 112, 140

HTTP GET
See also HTTP
byte-range requests 89–92
connection failure 146
delayed custom metadata 137
delayed objects 90
examples 96–102, 110–112, 122–123,

138–139
listing directory contents 108–112
nowait parameter 90, 137
reference 201
response headers 94–95, 109, 122, 138
retrieving custom metadata 136–139
retrieving custom metadata in compressed

format 137
retrieving data in compressed format 75
retrieving HCP-specific metadata 121–123
retrieving object data and custom metadata

in compressed format 90
retrieving object data and custom metadata

together 90
retrieving object data in compressed

format 90
retrieving objects 89–102
retrieving POSIX metadata 123
return codes 92–93, 108, 121, 137

HTTP HEAD
See also HTTP
checking existence of custom

metadata 134–136
checking existence of directories 106–108
checking existence of objects 86–89

checking storage capacity and software
version 141–143

examples 88–89, 107–108, 135–136,
142–143

reference 202
response headers 88, 107, 135, 142
return codes 87, 107, 135

HTTP MKDIR
See also HTTP
creating empty directories 105–106
example 106
reference 202
response headers 106, 120
return codes 105, 120

HTTP POST 69
HTTP PUT

See also HTTP
changing HCP-specific metadata 123–125
examples 81–86, 117–119, 120–121,

124–125, 133–134
overriding default directory

metadata 119–121
overriding default object metadata with

HTTP 118–119
Range request header 91–92
reference 203
response headers 81, 117, 124, 133
return codes 79–80, 116, 124, 132–133
sending custom metadata in compressed

format 132
sending data in compressed format 75
sending object data in compressed

format 77
storing custom metadata 131–134
storing object data and custom metadata

together 78
storing objects 77–86

HTTP response headers
HCP-specific 209–211
for multiple matching objects 74–75

HTTP TOUCH
See also HTTP
example 130
modifying atime and mtime 127
reference 204
return codes 127–128

I
index settings

See also index.txt metafile
about 58–59
changing 59–60
changing with HTTP 124
Index 243

Using the Default Namespace

index settings, with HCP search facility
with HCP search facility 58
with metadata query engine 58
overriding default with HTTP 59, 115

index, HTTP query parameter 115
index.txt metafile

See also index settings
changing with HTTP 124
for directories 25
for objects 27

indexes 8
info metadirectory 19
Initial Unspecified 40, 44, 46
IP addresses, namespace access by 194–195

L
large directory trees with du 184
large objects, reading with NFS 184
lazy close

CIFS 172
NFS 181–182

libcurl 69
listing directory contents with HTTP 108–112
locking, WebDAV 162

M
Mac OS X hosts file 193
mapping the namespace with CIFS 168
metadata

See also metafiles
about 33
change time 34–35
changing HCP-specific with HTTP 123–125
changing POSIX with HTTP 125–130
custom 2
HCP specific 34–35
HTTP query parameters for 114–115
modifying 34
POSIX 35–36
retrieving HCP-specific with HTTP 121–123
retrieving POSIX with HTTP 123
specifying on directory creation with

HTTP 119–121
specifying on object creation with

HTTP 118–119
system 2
types 34
WebDAV properties 155–158

metadata query API 6–7
metadata query engine

about 7
index settings with 58

Metadata Query Engine Console 7

metadirectories
.directory-metadata 19
about 4
for directories 18–20
expired 19
fcfs_metadata 16
info 19
for objects 20
settings 19

metafiles
See also metadata
about 4, 21
core-metadata.xml for directories 23
core-metadata.xml for objects 29
created.txt for directories 22
created.txt for objects 26
custom-metadata.xml 30, 60
for directories 21–25
dpl.txt for directories 25
dpl.txt for objects 27
hash.txt 27
index.txt for directories 25
index.txt for objects 27
for objects 26–30
replication.txt 27
retention.txt for directories 25
retention.txt for objects 28
retention-classes.xml 24
shred.txt for directories 25
shred.txt for objects 28
tpof.txt 26
URLs for 71–72

methods
HTTP 200–204
WebDAV 148–149

mode, WebDAV property 156, 157
modifying metadata 34
mounting the namespace with NFS 178
moving objects 196
mtime attribute

about 36
changing with HTTP 127
overriding default values with HTTP 115, 120

mtime, HTTP query parameter 115, 120, 127
multiple matching objects, response headers

for 74–75
multithreading

CIFS 175
general guidelines 197
HTTP 146
NFS 185
WebDAV 163–164
244 Index

Using the Default Namespace

namespace access protocols
N
namespace access protocols

See also CIFS; HTTP; NFS; SMTP; WebDAV
about 5–6
choosing 192–193

namespaces
See also default namespace
about 3
default and HCP 3–4
operations on 10–13
replicated 9–10

naming
email objects 188–190
objects 16–17
objects using HTTP 72
objects using WebDAV 151

NDMP 5
NFS

about 5, 192, 193
changing atime (example) 180
changing retention settings (example) 179
creating symbolic links (example) 180
delete operations 184
examples 179–181
failed write operations 183–184
large directory trees 184
lazy close 181–182
mounting the namespace 178
mounts on failed nodes 184
multithreading 185, 197
namespace access 178
open objects 182–183
out-of-order writes 182
ownership of new objects 39
permissions for new objects 39
reading large objects 184
retrieving deletable objects (example) 181
retrieving objects (example) 180–181
return codes 186
storing objects (example) 179
storing zero-sized files 182
supported operations 11–12
usage considerations 181–185

nodes
about 9
namespace access by IP address 194–195
NFS mounts on failed 184

non-ASCII, nonprintable characters 72, 151
non-WORM objects 196
nowait HTTP parameter 90, 137

O
objects

about 2–3
appendable 3
assigning to retention classes 48
change time 34–35
changing HCP-specific metadata with

HTTP 123–125
changing ownership 39
changing permissions 39
changing POSIX metadata with

HTTP 125–130
changing retention settings 45
checking existence with HTTP 86–89
content collisions 62–63
creation date 34
deleting with HTTP 102–105
email 189–190
email attachments 190
holding 41–42
index settings 59–60
indexing 58–60
metadirectories for 20
metafiles for 26–30
moving 196
names with non-ASCII, nonprintable

characters 72, 151
naming 16–17
naming with HTTP 72
naming with WebDAV 151
non-WORM 196
open, and CIFS 173
open, and HTTP 144–145
open, and NFS 182–183
open, and WebDAV 163–??
open,access using WebDAV ??–163
overriding default metadata with

HTTP 114–119
ownership 35, 36
ownership for new 38–39
permissions 35, 36–37
permissions for new 38–39
renaming 196
replicated 9–10, 27
representation 4–5
retention 39–57
retrieving HCP-specific metadata with

HTTP 121–123
retrieving in compressed format 90, 98–100
retrieving object data and custom metadata

together 90, 101–102
retrieving POSIX metadata with HTTP 123
retrieving with CIFS (example) 169–170
Index 245

Using the Default Namespace

objects, retrieving with HTTP
retrieving with HTTP 89–102
retrieving with NFS (example) 180–181
sending in compressed format 77, 82–84
shred settings 57–58
shredding 57–58
storing 2–3
storing in compressed format 75
storing object data and custom metadata

together 78, 84–86
storing with CIFS (example) 169
storing with HTTP 77–86
storing with NFS (example) 179
URLS for 71
WebDAV metadata properties for 155–157

octal permission values 38
offsets, specifying for retention setting 49–51
open objects

access using WebDAV ??–163
and CIFS 173
and HTTP 144–145
and NFS 182–183
and WebDAV 163–??

operations
prohibited 12–13
supported 11–12

out-of-order writes
CIFS 173
NFS 182

overriding
atime values with HTTP 115, 120
default directory metadata with

HTTP 119–121
default index settings with HTTP 59, 115
default object metadata with HTTP 118–119
default retention settings with HTTP 41
default shred settings with HTTP 57
mtime values with HTTP 115, 120
object owner with HTTP 115, 119
owning group with HTTP 119
permissions for directories with HTTP 115,

119
permissions for objects with HTTP 115
retention settings with HTTP 115
shred settings with HTTP 115

ownership
about 36
changing 39
changing with HTTP 126
new objects 38–39
overriding default with HTTP 115, 119

P
partial objects, retrieving with HTTP 89–92

percent encoding
returned object names 72, 151
in URLs 72–73, 152

permission checking
HTTP 143–144
WebDAV 161

permissions
about 36–37
atime synchronization, effect on 53
changing 39
changing with HTTP 126
CIFS translations of 171
HTTP checking 143–144
new objects 38–39
octal values 38
overriding for directories with HTTP 115, 119
overriding for objects with HTTP 115
viewing 37–38
WebDAV checking 161

persistent connections
HTTP 144
WebDAV 161–162

POSIX metadata
See also atime attribute; ctime attribute;

group IDs of owning groups;
permissions; mtime attribute; user IDs
of object owners

about 35–36
changing with HTTP 125–130

privileged delete 40
prohibited operations 12–13
properties, WebDAV 155–158

Q
query API

See metadata query API
quotation marks with URLs 73, 152

R
releasing objects from hold 42
renaming

empty directories 52
objects 196

replication
about 9–10
collision handling 62–??
object status 27, 35
topologies 9
WebDAV property 156

replication collisions
about 62
custom metadata 66–67
246 Index

Using the Default Namespace

replication collisions, object content
object content 62–63
system metadata 63–66

replication.txt metafile 27
replication-collision, WebDAV property 156
resources, WebDAV 3, 147
response headers

See HTTP response headers
retention

See also retention classes; retention
settings; retention.txt metafile

about 39–40
hold 41–42
HTTP query parameter 115
periods 40
WebDAV property 158

retention classes
See also retention; retention settings;

retention.txt metafile
about 42–43
assigning to objects 48
with atime synchronization 52
deleted 43, 45
list of 21

retention settings
See also retention; retention classes;

retention.txt metafile
changing 45–48
changing with CIFS (example) 169
changing with HTTP 124
changing with NFS (example) 179
default 40–41
metafile for (directories) 25
metafile for (objects) 28
overriding default with HTTP 41, 115
in retention.txt 43–45
specifying a date and time 48–49
specifying an offset 49–51
synchronization with atime attribute 51–57

retention.txt metafile
See also retention; retention classes;

retention settings
use with appendable objects 52
changing retention settings 46–51
changing retention settings with HTTP 124
for directories 25
for objects 28
retention settings in 43–45

retention-class, WebDAV property 156, 158
retention-classes.xml metafile 24
retention-hold, WebDAV property 156
retention-string, WebDAV property 156
retention-value, WebDAV property 156
retrieving

custom metadata with HTTP 136–139
deletable objects with CIFS (example) 170
deletable objects with NFS (example) 181
directory listings 108–112
HCP-specific metadata 121–123
object data and custom metadata

together 90, 101–102
objects with CIFS (example) 169–170
objects with HTTP 89–102
objects with NFS (example) 180–181
part of an object with HTTP 89–92

return codes
CIFS 176
HTTP 204–208
NFS 186
WebDAV 164–166

root user 34

S
sample

custom metadata file 60
data structure 18
metadata structure 30–31

Search Console 7–8
search facilities

about 7–8
indexes 8

search, object naming considerations 17
secure deletion 57
sending email to the namespace 188
settings metadirectory 19
shred

HTTP query parameter 115
WebDAV property 156, 157, 158

shred settings
See also shred.txt metafile
about 57
changing 58
changing with HTTP 124
metafile for (directories) 25
metafile for (objects) 28
overriding default with HTTP 57, 115

shred.txt metafile
See also shred settings
changing shred settings with HTTP 124
for directories 25
for objects 28

shredding 57
See also shred.txt metafile; shred settings

SMTP
about 5
connectivity 187
default index settings 59
Index 247

Using the Default Namespace

SMTP, default ownership and permissions
default ownership and permissions 39
default retention settings 41
default shred settings 57
email naming 188–190
ownership of new objects 39
permissions for new objects 39
sending email to the namespace 188
supported operations 11–12

software version, checking 141–143
status codes

See return codes
storage capacity, checking 141–143
storing

See also creating
custom metadata with HTTP 131–134
object data and custom metadata

together 78, 84–86
objects 2–3
objects with CIFS (example) 169
objects with HTTP 77–86
objects with NFS (example) 179
zero-sized files with CIFS 172
zero-sized files with HTTP 144
zero-sized files with NFS 182
zero-sized files with WebDAV 162

structuring directories 195–196
supported operations 11–12
symbolic links

creating with NFS (example) 180
with HTTP DELETE 102
with HTTP GET 89
with HTTP HEAD 86
with HTTP TOUCH 126
limitations on 12
operations 12

synchronization, atime 51–57
system metadata

about 2
collisions 63–66

T
temporary files, Windows 174–175
tenants 4
tpof.txt metafile 26
transmitting data in compressed format 75

U
uid

See also user IDs of object owners
changing with HTTP 126
HTTP query parameter 115, 119, 126
WebDAV property 157, 158

Unhold 48

Unix hosts file 193
update-time, WebDAV property 157, 158
URLs

formats for 70–72, 149–151
HTTP access to the namespace 70–73
maximum length 72
for metafiles 71–72
percent encoding 72–73, 152
WebDAV access to the namespace 149–152

usage considerations
CIFS 170–175
general 191–197
HTTP 143–146
NFS 181–185
WebDAV 161–164

user IDs of object owners 36
See also uid

users, root 34
UTF-8 encoding 17

V
viewing permissions 37–38

W
WebDAV

See also individual WebDAV methods
about 5, 192–193
accessing open objects ??–163
basic authentication 161
browsing the namespace 152–153
client timeouts 162
compliance level 147
dead properties 160
failed write operations 163
locking 162
metadata properties 155–158
methods 148–149
multithreading 163–164, 197
naming objects 151
open objects 163–??
ownership of new objects 38
permission checking 161
permissions for new objects 38
persistent connections 161–162
PROPFIND example 159–160
PROPPATCH example 158–159
return codes 164–166
storing zero-sized files 162
supported operations 11–12
URLs for namespace access 149–152
usage considerations 161–164
Windows client access 149

WebDAV COPY 148
248 Index

Using the Default Namespace

WebDAV DELETE
WebDAV DELETE 148
WebDAV GET 148
WebDAV HEAD 148
WebDAV LOCK 149, 162
WebDAV MKCOL 148
WebDAV MOVE 148
WebDAV OPTIONS 149
WebDAV POST 149
WebDAV PROPFIND

about 148
example 159–160

WebDAV PROPPATCH
about 148
example 158–159

WebDAV PUT 148
WebDAV TRACE 149
WebDAV UNLOCK 149, 162
whole-object URL query parameter 78
Windows

case sensitivity 170–171
creating empty directories 172
hosts file 193
permissions 38
temporary files 174–175
WebDAV access from 149

write operations
failed CIFS 174
failed HTTP 145
failed NFS 183–184
failed WebDAV 163

X
X-ArcAvailableCapacity response header 142,

209
X-ArcContentLength response header 209
X-ArcCustomMetadataContentType response

header 209
X-ArcCustomMetadataFirst response header 209
X-ArcCustomMetadataHash response header 209
X-ArcDataContentType response header 210
X-ArcErrorMessage response header 210
X-ArcHash response header 210
X-ArcPermissionsUidGuid response header 210
X-ArcServicedBySystem response header 210
X-ArcSize response header 210
X-ArcSoftwareVersion response header 142, 210
X-ArcTimes response header 210
X-ArcTotalCapacity response header 142, 211
X-DocCount response header 74
X-DocURI response header 74

Z
zero-sized files, storing

CIFS 172
HTTP 144
NFS 182
WebDAV 162
Index 249

Using the Default Namespace

250 Index

Using the Default Namespace

Using the Default Namespace

MK-95ARC012-18

Hitachi Data Systems

Corporate Headquarters
2845 Lafayette Street
Santa Clara, California 95050-2627
U.S.A.
www.hds.com

Regional Contact Information

Americas
+1 408 970 1000
info@hds.com

Europe, Middle East, and Africa
+44 (0) 1753 618000
info.emea@hds.com

Asia Pacific
+852 3189 7900
hds.marketing.apac@hds.com

www.hds.com
mailto:info@hds.com
mailto:info.emea@hds.com
mailto:hds.marketing.apac@hds.com

	Using the Default Namespace
	Preface
	Intended audience
	Product version
	Syntax notation
	Related documents
	Getting help
	Comments

	Introduction to Hitachi Content Platform
	About Hitachi Content Platform
	Object-based storage
	Namespaces and tenants
	Object representation
	Data access
	Namespace access protocols
	HCP metadata query API
	HCP Search Console
	HCP Data Migrator

	HCP nodes
	Replication

	Default namespace operations
	Operation restrictions
	Supported operations
	Prohibited operations

	HCP file system
	Root directories
	Object naming considerations
	Sample data structure for examples
	Metadirectories
	Metadirectories for directories
	Metadirectories for objects

	Metafiles
	Metafiles for directories
	Metafiles for objects

	Complete metadata structure

	Object properties
	Object metadata
	Ownership and permissions
	Viewing permissions
	Octal permission values
	Ownership and permissions for new objects
	Changing ownership and permissions for existing objects

	Retention
	Retention periods
	Retention classes
	Retention settings in retention.txt
	Changing retention settings
	Specifying a date and time
	Specifying an offset

	atime synchronization with retention
	Triggering atime synchronization for existing objects
	Removing the association
	How atime synchronization works
	atime synchronization example

	Shred setting
	Index setting
	Custom metadata
	Replication collisions
	Object content collisions
	System metadata collisions
	Custom metadata collisions

	HTTP
	URLs for HTTP access to a namespace
	URL formats
	URL considerations
	Access with a cryptographic hash value

	Transmitting data in compressed format
	Browsing the namespace with HTTP
	Working with objects
	Storing an object and, optionally, custom metadata
	Checking the existence of an object
	Retrieving an object and, optionally, custom metadata
	Deleting an object

	Working with directories
	Creating an empty directory
	Checking the existence of a directory
	Listing directory contents
	Deleting a directory

	Working with system metadata
	Specifying metadata on object creation
	Specifying metadata on directory creation
	Retrieving HCP-specific metadata
	Retrieving POSIX metadata
	Modifying HCP-specific metadata
	Modifying POSIX metadata

	Working with custom metadata
	Storing custom metadata
	Checking the existence of custom metadata
	Retrieving custom metadata
	Deleting custom metadata

	Checking the available storage and software version
	HTTP usage considerations
	HTTP permission checking
	HTTP persistent connections
	Storing zero-sized files with HTTP
	Using HTTP with objects open for write
	Failed HTTP write operations
	HTTP connection failure handling
	Data chunking with HTTP write operations
	Multithreading with HTTP

	WebDAV
	WebDAV methods
	URLs for WebDAV access to the default namespace
	URL formats
	URL considerations

	Browsing the namespace with WebDAV
	WebDAV properties
	Live and dead properties
	Storage properties
	HCP-specific metadata properties for WebDAV
	Metadata properties for objects
	Metadata properties for directories
	PROPPATCH example
	PROPFIND example

	Using the custom-metadata.xml file to store dead properties

	WebDAV usage considerations
	Basic authentication with WebDAV
	WebDAV permission checking
	WebDAV persistent connections
	WebDAV client timeouts with long-running requests
	WebDAV object locking
	Storing zero-sized files with WebDAV
	Using WebDAV with objects open for write
	Failed WebDAV write operations
	Multithreading with WebDAV

	WebDAV return codes

	CIFS
	Namespace access with CIFS
	CIFS examples
	CIFS example 1: Storing an object
	CIFS example 2: Changing a retention setting
	CIFS example 3: Retrieving an object
	CIFS example 4: Retrieving deletable objects

	CIFS usage considerations
	CIFS case sensitivity
	CIFS permission translations
	Changing directory permissions when using Active Directory
	Creating an empty directory with atime synchronization in effect
	CIFS lazy close
	Storing zero-sized files with CIFS
	Out-of-order writes with CIFS
	Using CIFS with Objects open for write
	Failed CIFS write operations
	Temporary files created by Windows clients
	Multithreading with CIFS

	CIFS return codes

	NFS
	Namespace access with NFS
	NFS examples
	NFS example 1: Adding a file
	NFS example 2: Changing a retention setting
	NFS example 3: Using atime to set retention
	NFS example 4: Creating a symbolic link in the namespace
	NFS example 5: Retrieving an object
	NFS example 6: Retrieving deletable objects

	NFS usage considerations
	NFS lazy close
	Storing zero-sized files with NFS
	Out-of-order writes with NFS

	Using NFS with objects open for write
	Failed NFS write operations
	NFS reads of large objects
	Walking large directory trees
	NFS delete operations
	NFS mounts on a failed node
	Multithreading with NFS

	NFS return codes

	SMTP
	Storing individual emails
	Naming conventions for email objects

	General usage considerations
	Choosing an access protocol
	Using a hosts file
	DNS name and IP address considerations
	Directory structures
	Non-WORM objects
	Moving or renaming objects
	Deleting objects under repair
	Deleting directories
	Multithreading

	HTTP reference
	HTTP methods
	HTTP return codes
	HCP-specific HTTP response headers

	Java classes for examples
	GZIPCompressedInputStream class
	WholeIOInputStream class
	WholeIOOutputStream class

	Glossary
	Index

